rl-ppo-moonlanding-v1 / config.json
bdiptesh99's picture
First commit
142055a
raw
history blame
14.4 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f91bde78040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f91bde780d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f91bde78160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f91bde781f0>", "_build": "<function ActorCriticPolicy._build at 0x7f91bde78280>", "forward": "<function ActorCriticPolicy.forward at 0x7f91bde78310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f91bde783a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f91bde78430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f91bde784c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f91bde78550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f91bde785e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f91bde724b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673162264613150180, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE3uI73iZAw+Dii+PZ6hHL4NRa48ahisPAAAAAAAAAAA5qeVPcHzg7yHkkS8OkQyu+km8r1J/w68AACAPwAAgD+av/089sQLujr96Lo3nlS2NlydOSxJBzoAAIA/AACAP80nFb171re6dOWUPO+qhjykzWC7gkJqPQAAgD8AAIA/mhGAvIerKD6o6YE+zYo2vhXOkD2804w9AAAAAAAAAAAAEl08XP82uuTiKbirh+qyeUMOu9a8SDcAAIA/AACAP2ZugjzhkIS6Yt0hObzVHTR/9Vc67K48uAAAgD8AAIA/mrhUvhUSMD+6fXA9tiO/vlBL5b0OxTi9AAAAAAAAAACg+Ck+dPmFPn6A9r1jOzm+cOa6PO712j0AAAAAAAAAAMB2iD0OQok+HfkQvvytYr62tna7/qHzvAAAAAAAAAAAzVWPPNeTVLtCS8I7hOp6PIAOeDzzFlm9AACAPwAAgD8A07g8isiGPvAA0TxZkDC+7gJlPOHUOLwAAAAAAAAAAJr5o7yuyYC62r+fteKN/rBtBje4YpymNAAAgD8AAIA/ZmKjOzigpLvmfC0+7pARviD9G73LRvq+AACAPwAAgD+q+8E+A/+RP6a6ez7B0I++v2xuPkeqKb0AAAAAAAAAADuvjb4X8Dk/CY9DvkXH0r5GDJm+Y2VLvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIN8E3TZ9NbUCUhpRSlIwBbJRNSAGMAXSUR0CaqUrIo3JgdX2UKGgGaAloD0MIKes3E5P0cUCUhpRSlGgVTQkCaBZHQJqsSAlOXVt1fZQoaAZoCWgPQwjIBtLFpr9uQJSGlFKUaBVNNgFoFkdAmqyLGFSKnHV9lChoBmgJaA9DCK63zVSIxXBAlIaUUpRoFU3cAWgWR0CaruY+Sr5qdX2UKGgGaAloD0MIRibg1whScECUhpRSlGgVTUMBaBZHQJqxfl6qsEJ1fZQoaAZoCWgPQwhEGapiKoBtQJSGlFKUaBVNlAFoFkdAmrHCjgydnXV9lChoBmgJaA9DCEPjiSAO6XFAlIaUUpRoFU1JAWgWR0CasglXA/LUdX2UKGgGaAloD0MIgA2IEFcWckCUhpRSlGgVTVoBaBZHQJqyUjUutfZ1fZQoaAZoCWgPQwjiAWVTro5uQJSGlFKUaBVNRgFoFkdAmrTaJVKf4HV9lChoBmgJaA9DCHv0hvvIEG9AlIaUUpRoFU3DAWgWR0CatZm+0w8GdX2UKGgGaAloD0MIgT0mUprzXECUhpRSlGgVTegDaBZHQJq2SJwbVBl1fZQoaAZoCWgPQwhvg9pv7WlwQJSGlFKUaBVNmAFoFkdAmrcVtKqXGHV9lChoBmgJaA9DCOTZ5VtfoXBAlIaUUpRoFU1vAWgWR0CauC60pmVadX2UKGgGaAloD0MI2+BE9GttbECUhpRSlGgVTdYBaBZHQJq488xKxs51fZQoaAZoCWgPQwgH7GryFChvQJSGlFKUaBVNQgFoFkdAmrorM1TBInV9lChoBmgJaA9DCP62J0hs1XBAlIaUUpRoFU2IAWgWR0CaurtxMnJDdX2UKGgGaAloD0MISfYINcPocUCUhpRSlGgVTTMBaBZHQJq8AV1wHZ91fZQoaAZoCWgPQwh8t3nj5K5xQJSGlFKUaBVNUAFoFkdAmr0Hyd4FA3V9lChoBmgJaA9DCAw6IXRQnXJAlIaUUpRoFU0SAWgWR0CavmwpvxYrdX2UKGgGaAloD0MItjAL7VwyckCUhpRSlGgVTXwCaBZHQJq+dtdiUgV1fZQoaAZoCWgPQwiefeVBurBwQJSGlFKUaBVNWAFoFkdAmsGLfxc3VHV9lChoBmgJaA9DCPc7FAV6WmxAlIaUUpRoFU2JAWgWR0CawcSK3uuzdX2UKGgGaAloD0MI5EhnYOTEbkCUhpRSlGgVTS0BaBZHQJrDqdK/VRV1fZQoaAZoCWgPQwj7PbFOFahrQJSGlFKUaBVNTwFoFkdAmvqF3t8eCHV9lChoBmgJaA9DCPj6WpcaEXFAlIaUUpRoFU03AWgWR0Ca+2LbYbsGdX2UKGgGaAloD0MI5Ga4Ad96cUCUhpRSlGgVTaUBaBZHQJr9i9Iwudx1fZQoaAZoCWgPQwh/FeC7Ta1uQJSGlFKUaBVNOQFoFkdAmv2+LiuMdnV9lChoBmgJaA9DCHEeTmD6Z3BAlIaUUpRoFU1JAWgWR0Ca/eO2RaHLdX2UKGgGaAloD0MIDXBBtizGcUCUhpRSlGgVTXwBaBZHQJr+FWLgn+h1fZQoaAZoCWgPQwikbJG0G3xwQJSGlFKUaBVNQgJoFkdAmwGsdtEXtXV9lChoBmgJaA9DCLXf2onSMHJAlIaUUpRoFU2VAWgWR0CbA7e3QUpNdX2UKGgGaAloD0MIGttrQS9FcUCUhpRSlGgVTYABaBZHQJsD4oOQQtl1fZQoaAZoCWgPQwiOc5twr2FxQJSGlFKUaBVNjQFoFkdAmwndPci4a3V9lChoBmgJaA9DCCmxa3u7/29AlIaUUpRoFU3mAWgWR0CbCv7sv7FbdX2UKGgGaAloD0MIWBtjJ3yockCUhpRSlGgVTf0CaBZHQJsLljNIK+l1fZQoaAZoCWgPQwiTb7a5MZBsQJSGlFKUaBVNlwFoFkdAmwxuw1R+B3V9lChoBmgJaA9DCP3BwHNvcnFAlIaUUpRoFU13AWgWR0CbDUnbZezEdX2UKGgGaAloD0MIP47myAq9ckCUhpRSlGgVTUYBaBZHQJsNp93KSxJ1fZQoaAZoCWgPQwhwCisV1DVwQJSGlFKUaBVNdgFoFkdAmw33Lq2SdXV9lChoBmgJaA9DCD2cwHTaLHBAlIaUUpRoFU3oAWgWR0CbDhL6k691dX2UKGgGaAloD0MIMVwdAPG4b0CUhpRSlGgVTUoCaBZHQJsPYxN7Bwd1fZQoaAZoCWgPQwiaWyGsxqByQJSGlFKUaBVNpwFoFkdAmxHla0QbuXV9lChoBmgJaA9DCJPi4xNyBHBAlIaUUpRoFU1iA2gWR0CbEgjU/fO2dX2UKGgGaAloD0MIjNtoAG+zcECUhpRSlGgVTWkBaBZHQJsS8qEvkBF1fZQoaAZoCWgPQwiIEFfO3o5sQJSGlFKUaBVNZwFoFkdAmxSjKgZjx3V9lChoBmgJaA9DCPUPIhmyKXBAlIaUUpRoFU3rAWgWR0CbFQk690zTdX2UKGgGaAloD0MIy2lPyTnlb0CUhpRSlGgVTR0BaBZHQJsXa9K28Zl1fZQoaAZoCWgPQwg1JO6xdH9uQJSGlFKUaBVNqwFoFkdAmxergGbCrXV9lChoBmgJaA9DCF6CUx/IlGtAlIaUUpRoFU09AWgWR0CbGXv3JxNqdX2UKGgGaAloD0MILEZda+9ecUCUhpRSlGgVTWEBaBZHQJscG8Hv+fh1fZQoaAZoCWgPQwjK372jhglwQJSGlFKUaBVNcgFoFkdAmx83rD63zHV9lChoBmgJaA9DCCaOPBBZeXFAlIaUUpRoFU2iAWgWR0CbIXwN9YwJdX2UKGgGaAloD0MIN8XjohrfcUCUhpRSlGgVTbUBaBZHQJsjENb1RLt1fZQoaAZoCWgPQwjB/YAHBo9vQJSGlFKUaBVN1wFoFkdAmyQk2pAD73V9lChoBmgJaA9DCHx+GCE8WW9AlIaUUpRoFU1sAWgWR0CbJHNfPX05dX2UKGgGaAloD0MIGcqJdlVEckCUhpRSlGgVTTECaBZHQJslO9bor4F1fZQoaAZoCWgPQwhLBKp/UOJwQJSGlFKUaBVNowFoFkdAmyctNSIgvHV9lChoBmgJaA9DCKwahLnd8HJAlIaUUpRoFU2QAWgWR0CbKeJ0nw5OdX2UKGgGaAloD0MIK4iBrv3Ub0CUhpRSlGgVTSECaBZHQJsqrwQUYbd1fZQoaAZoCWgPQwg7cqQzMNNyQJSGlFKUaBVN7gFoFkdAm2CsmBvrGHV9lChoBmgJaA9DCKuuQzXli3BAlIaUUpRoFU2nAWgWR0CbYm/s3Q2NdX2UKGgGaAloD0MIKqc9JSfPcECUhpRSlGgVTYkBaBZHQJtjQ4Otnwp1fZQoaAZoCWgPQwg/U69bhCtiQJSGlFKUaBVN6ANoFkdAm2RIKD0163V9lChoBmgJaA9DCOWaApkdb3BAlIaUUpRoFU1tAWgWR0CbZJt8uzyCdX2UKGgGaAloD0MI/686cqTlaUCUhpRSlGgVTdkBaBZHQJtlW/L1VYJ1fZQoaAZoCWgPQwjx9EpZBhRxQJSGlFKUaBVNdAFoFkdAm2eZkPMB63V9lChoBmgJaA9DCET9LmxNkHBAlIaUUpRoFU1lAWgWR0CbaML0z0pWdX2UKGgGaAloD0MIPGnhsoqEbkCUhpRSlGgVTXgBaBZHQJtsyz/p+tt1fZQoaAZoCWgPQwidhT3tsG5wQJSGlFKUaBVNiQFoFkdAm22TjJdSl3V9lChoBmgJaA9DCP9BJEOOhGxAlIaUUpRoFU1OAWgWR0CbcKR+BpYcdX2UKGgGaAloD0MIZwsIrQeUcECUhpRSlGgVTYMBaBZHQJtwtM495hV1fZQoaAZoCWgPQwjwNm+cFIJtQJSGlFKUaBVN1QFoFkdAm3EQob4rSXV9lChoBmgJaA9DCKFkcmqngHBAlIaUUpRoFU0XA2gWR0Cbc2Ge+VTrdX2UKGgGaAloD0MIijve5Le1ckCUhpRSlGgVTTUBaBZHQJt0sFqzqr11fZQoaAZoCWgPQwjK/Q5FAaxvQJSGlFKUaBVNCQJoFkdAm3ZdcfNiY3V9lChoBmgJaA9DCFRSJ6AJUXFAlIaUUpRoFU09AWgWR0CbdowGW2PUdX2UKGgGaAloD0MIQwOxbGYPbUCUhpRSlGgVTVYBaBZHQJt3fBXS0Bx1fZQoaAZoCWgPQwjnqQ65GU5xQJSGlFKUaBVNmAFoFkdAm3d76Hj6vnV9lChoBmgJaA9DCEhRZ+4hrWxAlIaUUpRoFU1ZAWgWR0CbeIE1EVnFdX2UKGgGaAloD0MIntMs0K4vcECUhpRSlGgVTRoBaBZHQJt4xf6XSjR1fZQoaAZoCWgPQwg2dLM/0PltQJSGlFKUaBVNogFoFkdAm3k47FKkEnV9lChoBmgJaA9DCNjw9ErZLXBAlIaUUpRoFU37AWgWR0CbehuQZGaydX2UKGgGaAloD0MIWfllMMZ3cUCUhpRSlGgVTTcBaBZHQJt84FY+0PZ1fZQoaAZoCWgPQwjBHahTHnNxQJSGlFKUaBVNVQFoFkdAm32Ye5nUUnV9lChoBmgJaA9DCOP+I9Mh32tAlIaUUpRoFU0+AWgWR0Cbf82Zy+6AdX2UKGgGaAloD0MISL99HfgQcUCUhpRSlGgVTUcBaBZHQJt/5Up/gBN1fZQoaAZoCWgPQwhoXDgQ0oVwQJSGlFKUaBVNcQFoFkdAm4IYa5wwTXV9lChoBmgJaA9DCKcC7nk+DHJAlIaUUpRoFU1GAWgWR0Cbg20vGp++dX2UKGgGaAloD0MI0qqWdNTycUCUhpRSlGgVTVIBaBZHQJuFjXXiBGx1fZQoaAZoCWgPQwgs0y8R78JqQJSGlFKUaBVNQgFoFkdAm4Xf2GqPwXV9lChoBmgJaA9DCNsTJLY7DnJAlIaUUpRoFU1aAWgWR0CbhiKRuCPIdX2UKGgGaAloD0MIcVevImNDcECUhpRSlGgVTV8BaBZHQJuI2RDCxeN1fZQoaAZoCWgPQwi7SKEs/J5rQJSGlFKUaBVNfQFoFkdAm4jZZ0Syt3V9lChoBmgJaA9DCIJvmj67YnBAlIaUUpRoFU1FAWgWR0CbiWI2wV0tdX2UKGgGaAloD0MIYrzmVZ2rb0CUhpRSlGgVTWMBaBZHQJuJkydnTRZ1fZQoaAZoCWgPQwh0C12JQIluQJSGlFKUaBVN8QFoFkdAm4qtIGyHEnV9lChoBmgJaA9DCJwzorT3SHJAlIaUUpRoFU29AmgWR0Cbisr8zhxYdX2UKGgGaAloD0MIBOPg0rHdcECUhpRSlGgVTXMBaBZHQJuOY6xPfsN1fZQoaAZoCWgPQwiGyypsBn5xQJSGlFKUaBVNfgFoFkdAm4/SAc1fmnV9lChoBmgJaA9DCIY8ghvptnFAlIaUUpRoFU1aAWgWR0CbkGeHBUJfdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "n_steps": 1024, "gamma": 0.9999, "gae_lambda": 0.99, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}