--- license: cc-by-4.0 language: - ru library_name: nemo pipeline_tag: token-classification tags: - G2P - Grapheme-to-Phoneme --- # Russian G2P token classification model This is a non-autoregressive model for Russian grapheme-to-phoneme (G2P) conversion based on BERT architecture. It predicts phonemes in IPA format. Initial data was built using Wiktionary json from https://kaikki.org/dictionary/Russian/index.html ## Intended uses & limitations The input is expected to consist of cyrillic letters separated by space. Real space should be replaced to underscore(_). Note that the model was trained on single words and some short phrases. Though it can accept longer phrases its accuracy may degrade on them. ### How to use Install NeMo. Download ru_g2p.nemo (this model) ```bash git lfs install git clone https://huggingface.co/bene-ges/ru_g2p_ipa_bert_large ``` Run ```bash python ${NEMO_ROOT}/examples/nlp/text_normalization_as_tagging/normalization_as_tagging_infer.py \ pretrained_model=ru_g2p_ipa_bert_large/ru_g2p.nemo \ inference.from_file=input.txt \ inference.out_file=output.txt \ model.max_sequence_len=512 \ inference.batch_size=128 \ lang=ru ``` Example of input file: ``` и с х о д т р а н с н е п т у н о в ы х т е л я т н и к о в с к о е ц а р с к о г о к р о с х о ф г а н с - ю р г е н д а р д а н е л л ``` Example of output file: ``` ɪ s x 'o t и с х о д ɪ s x 'o t ɪ s x 'o t PLAIN PLAIN PLAIN PLAIN PLAIN t r a nʲ sʲ nʲ ɪ p t 'u n ə v ɨ x т р а н с н е п т у н о в ы х t r a nʲ sʲ nʲ ɪ p t 'u n ə v ɨ x t r a nʲ sʲ nʲ ɪ p t 'u n ə v ɨ x PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN tʲ ɪ lʲ 'æ tʲ nʲ ɪ k ə f s k ə jə т е л я т н и к о в с к о е tʲ ɪ lʲ 'æ tʲ nʲ ɪ k ə f s k ə jə tʲ ɪ lʲ 'æ tʲ nʲ ɪ k ə f s k ə jə PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN t~s 'a r s k ə v ə ц а р с к о г о t~s 'a r s k ə v ə t~s 'a r s k ə v ə PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN k r ɐ s x 'o f к р о с х о ф k r ɐ s x 'o f k r ɐ s x 'o f PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN ɡ a n s 'ju r ɡʲ ɪ n г а н с - ю р г е н ɡ a n s _ 'ju r ɡʲ ɪ n ɡ a n s _ 'ju r ɡʲ ɪ n PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN d ə r d ɐ n 'ɛ ɫ д а р д а н е л л d ə r d ɐ n 'ɛ ɫ d ə r d ɐ n 'ɛ ɫ PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN PLAIN ``` Note that the correct output tags are in the **third** column, input is in the second column. Tags correspond to input letters in a one-to-one fashion. If you remove `` tag, `+`, `~`, and spaces, you should get IPA-like transcription. The model does not predict secondary stress. The primary stress is put directly before the stressed vowel. In some cases stress can be missing. ### How to use for TTS See example of inference pipeline for G2P + FastPitch + HifiGAN in this [notebook](https://github.com/bene-ges/nemo_compatible/blob/main/notebooks/Russian_TTS_with_IPA_G2P_FastPitch_and_HifiGAN.ipynb).