File size: 13,751 Bytes
34c7ba6
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7caa8069e9e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7caa8069ea70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7caa8069eb00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7caa8069eb90>", "_build": "<function ActorCriticPolicy._build at 0x7caa8069ec20>", "forward": "<function ActorCriticPolicy.forward at 0x7caa8069ecb0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7caa8069ed40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7caa8069edd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7caa8069ee60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7caa8069eef0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7caa8069ef80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7caa8069f010>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7caa80847ec0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1695306442599044932, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZ66juuuZy6fR/4uZH7PzZjgaG6iqYOOQAAgD8AAIA/zeqsvKTgfrm9L8y6fPlhNYvt9ruAO/I5AACAPwAAgD+ag4E8s8noPivmW728I2q+m/ZwPTob7rwAAAAAAAAAAA2HkD2uVaa6AkmyO3DtpLaRfaW66sKatQAAgD8AAAAAQLQYvlLwkzp0B5E8DaQBup7EhbymYeU6AACAPwAAgD8aqs69j+phun7ljbsV9y82k5kgu0a5ozoAAIA/AAAAAM2AVTwpDHq6ZdlRORxPWjRrRzI7MkB1uAAAgD8AAIA/Jm6Dva7BhbrgjNq60bPXtdaqx7pGuf45AACAPwAAgD9myIu8j1IquhsrUbvlJVs1h5kcuwD7x7QAAIA/AACAP/NX171c+y669kOcO6AXqja9ihi6j4K2ugAAgD8AAIA/pryhvXtIi7omWz46zuO8NYRoHrvlT125AACAPwAAgD8AeHK9ww0ruqgjGrysuZ42uP0uuzcoErYAAIA/AACAPwCwj7z2bDm6yjeivALyC7YpKUi6ijN/NQAAgD8AAIA/M4FwvFwjVbqtkk86ZhtrNh9yXLuTXnC5AACAPwAAgD+NGOK9KcRkunc8xjvbKOw3COXnunNSjjYAAIA/AACAPzMnQb2PklO683dUOa1bH7bsh+86App2uAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGDb3BYV6/uMAWyUTegDjAF0lEdAlAcYuK4x13V9lChoBkdAZIGAsCkoF2gHTegDaAhHQJQHnhS9/SZ1fZQoaAZHQGl29VNpM6BoB03oA2gIR0CUCq3yZrpJdX2UKGgGR0BF3Kpkwvg4aAdLm2gIR0CUECCu2Zy/dX2UKGgGR0BlXChg3LmqaAdN6ANoCEdAlBGUG7jDK3V9lChoBkdAYURwwTM7l2gHTegDaAhHQJQScJUo8ZF1fZQoaAZHQGUQizLOiWVoB03oA2gIR0CUGLLGJemfdX2UKGgGR8BBP0hNdqtYaAdLiWgIR0CUGN3rleWwdX2UKGgGR0BghliONo8IaAdN6ANoCEdAlBkJzkp7TnV9lChoBkdAX3Sk9ECvHWgHTegDaAhHQJQZrjGT9sJ1fZQoaAZHQGWS4HoouwpoB03oA2gIR0CUIOhgVoHtdX2UKGgGR0BhK10zTF2naAdN6ANoCEdAlCElDfFaS3V9lChoBkdAIxycLBsQ/WgHS79oCEdAlCUEWM0gsHV9lChoBkdAZi41AJLM92gHTegDaAhHQJQndqO938p1fZQoaAZHQGaQoI4VARloB03oA2gIR0CUKTWUbDMvdX2UKGgGR0BlI6UHIIWyaAdN6ANoCEdAlDLCI+GGmHV9lChoBkdAZhZEb5uZTmgHTegDaAhHQJQzHyqdYnx1fZQoaAZHQGQHO45Lh75oB03oA2gIR0CUUBhiLEUCdX2UKGgGR0BjfPvfCQ9zaAdN6ANoCEdAlFPnLvCuU3V9lChoBkdAYLb4nF5v+GgHTegDaAhHQJRWHzGxUvR1fZQoaAZHQGTVhzvJA+poB03oA2gIR0CUWRsMAmzCdX2UKGgGRz/5aNMoMKCyaAdLqWgIR0CUWkijtXxOdX2UKGgGR0Bb/eIZZSvUaAdN6ANoCEdAlF8Cqp97W3V9lChoBkdAaGNEWIoE0WgHTegDaAhHQJRiPzTWoWJ1fZQoaAZHQGahr74zrNZoB03oA2gIR0CUa3UzbeuWdX2UKGgGR0BjMlyvLX+VaAdN6ANoCEdAlGu7i++M63V9lChoBkdAY4DtHhCMP2gHTegDaAhHQJRr9HH3lCF1fZQoaAZHQGeehxYJVsFoB03oA2gIR0CUdSXUYsNEdX2UKGgGR0Bn1/Uc4o7WaAdN6ANoCEdAlHVOGsV+JHV9lChoBkdAP8+Q2dd3S2gHS59oCEdAlHWu9OARTXV9lChoBkdAY2bmbLEDQ2gHTegDaAhHQJR4F2C/XXl1fZQoaAZHQGhhZR0lqrRoB03oA2gIR0CUeayoGY8ddX2UKGgGR0BnxHOdGy5aaAdN6ANoCEdAlHq9bcGke3V9lChoBkdAZj831jAi3WgHTegDaAhHQJSAF88cMmZ1fZQoaAZHQGVKZCngpBpoB03oA2gIR0CUgEVTrE9/dX2UKGgGR0Bll3uRcNYsaAdN6ANoCEdAlKFtGNJe3XV9lChoBkdAZIubKifxt2gHTegDaAhHQJSknVDrqt51fZQoaAZHQGQQk0SAYpFoB03oA2gIR0CUqOG47Rv4dX2UKGgGR0BljUI/qxC6aAdN6ANoCEdAlKqNthuwYHV9lChoBkdAZQ7e40/GEWgHTegDaAhHQJSv+XXyy2R1fZQoaAZHQGSLqdH2AXloB03oA2gIR0CUshgbp/wzdX2UKGgGR0BlrwREnb7CaAdN6ANoCEdAlLhnctXgcnV9lChoBkdAZZfx5s0pE2gHTegDaAhHQJS4vKifxtp1fZQoaAZHQGGIj0Dlo11oB03oA2gIR0CUwNLoOhCddX2UKGgGR0BiDtsrNGExaAdN6ANoCEdAlMEF8ohIOHV9lChoBkdAZktApKBd2WgHTegDaAhHQJTBfSv1UVB1fZQoaAZHQEA99qk/KQtoB0ufaAhHQJTBqL5ylvZ1fZQoaAZHQGJXPuPV/c5oB03oA2gIR0CUw+sr/bTMdX2UKGgGR0BhhE5OrQw9aAdN6ANoCEdAlMV4kmhM8HV9lChoBkdAZfoQ5myxA2gHTegDaAhHQJTGk9QoCuF1fZQoaAZHQGY+Imw7kn1oB03oA2gIR0CUzF6rvLHNdX2UKGgGR0BlSy6FuejEaAdN6ANoCEdAlMyTQRf4RHV9lChoBkdAZzRBO58Sf2gHTegDaAhHQJTyD/xUedV1fZQoaAZHQGkLdvCMxXZoB03oA2gIR0CU9Gs+mm+CdX2UKGgGR0BeOWX5WRzSaAdN6ANoCEdAlPdxmkFfRnV9lChoBkdAaDelXzUZvWgHTegDaAhHQJT4pof0Vah1fZQoaAZHQGIEm8mKIi1oB03oA2gIR0CU/L8A7xNJdX2UKGgGR0BkARekYXO4aAdN6ANoCEdAlP7YlY2bX3V9lChoBkdAZbFJ7LMcImgHTegDaAhHQJUFALH+6y11fZQoaAZHQGLo+TeO4oZoB03oA2gIR0CVDXxyn1nNdX2UKGgGR0BgdC0lZ5iWaAdN6ANoCEdAlQ2msq8UVXV9lChoBkdAYu8QGwA2h2gHTegDaAhHQJUOFG0/nnx1fZQoaAZHQGGILns9jgBoB03oA2gIR0CVDj8/2TPjdX2UKGgGR0BlOtARkEs8aAdN6ANoCEdAlRBJaePJaXV9lChoBkdAZR85AhStNmgHTegDaAhHQJURsgyM1j11fZQoaAZHQGfj9Jaq0dBoB03oA2gIR0CVErPHDJlrdX2UKGgGR0BnkU2vStvGaAdN6ANoCEdAlRpTB2wFDHV9lChoBkdAYuMam4y44WgHTegDaAhHQJUaoMz/IbR1fZQoaAZHQFPhBSDRMOBoB0utaAhHQJU4ggMc6vJ1fZQoaAZHQGPTAntv4udoB03oA2gIR0CVPg5FPSDzdX2UKGgGR0BlJHc32mHhaAdN6ANoCEdAlUA28Zk08HV9lChoBkdAZLipG4I8hmgHTegDaAhHQJVC/p5eJHl1fZQoaAZHQGbECiqQzUJoB03oA2gIR0CVRCG5+YtydX2UKGgGR0BkgrjBEa2naAdN6ANoCEdAlUfs1CPZI3V9lChoBkdAYzS3dbgTAWgHTegDaAhHQJVJ+Xb/Ot51fZQoaAZHQGIR9U83dbhoB03oA2gIR0CVUDhHskY5dX2UKGgGR0Bdz8pobn5jaAdN6ANoCEdAlVvFWGRFJHV9lChoBkdAYj8UGFBY3mgHTegDaAhHQJVcBf8dgfF1fZQoaAZHQGepA4wRGtpoB03oA2gIR0CVXKU96kZadX2UKGgGR0BnR4yVObiIaAdN6ANoCEdAlVzbkXDWLHV9lChoBkdAZqra4+bExmgHTegDaAhHQJVf/di2Dxt1fZQoaAZHQGQFTCLuQZJoB03oA2gIR0CVYlEidJ8OdX2UKGgGR0BnwkdLg4wRaAdN6ANoCEdAlWPp5E+gUXV9lChoBkdAZf645tFa0WgHTegDaAhHQJVqtwjt5Ut1fZQoaAZHQGIZ8N6PbPBoB03oA2gIR0CVhXc580DVdX2UKGgGR0BjvuozeoDQaAdN6ANoCEdAlYxYKQaJh3V9lChoBkdAZ1iDM/yGz2gHTegDaAhHQJWOwC9ytFN1fZQoaAZHQGWcX1anrIJoB03oA2gIR0CVkxG7SRbKdX2UKGgGR0Bi/UKmbb1zaAdN6ANoCEdAlZSvgBLf13V9lChoBkdAYNkXDWK/EmgHTegDaAhHQJWaZ/vv0Ad1fZQoaAZHQGDnnQY1pCdoB03oA2gIR0CVnaKcurZKdX2UKGgGR0Bmp3K+zt1IaAdN6ANoCEdAlaZoJzDGcXV9lChoBkdAYK8vIwM6R2gHTegDaAhHQJWwAbdadMF1fZQoaAZHQGE4zrVvuPVoB03oA2gIR0CVsDRdhRZVdX2UKGgGR0BlV88YAKfGaAdN6ANoCEdAlbCpXQtz0nV9lChoBkdAZtp1vES/TWgHTegDaAhHQJWw1LteD4B1fZQoaAZHQGHHjmCAc1hoB03oA2gIR0CVst0fYBeYdX2UKGgGR0BfGE61b7j1aAdN6ANoCEdAlbQ20AtFrnV9lChoBkdAZk8jpLVWj2gHTegDaAhHQJW1LxJ/XoV1fZQoaAZHQGkB4kmhM8JoB03oA2gIR0CVukhHLA58dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}