--- license: llama2 library_name: peft tags: - generated_from_trainer base_model: codellama/CodeLlama-7b-hf model-index: - name: outputs/lora-out results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: codellama/CodeLlama-7b-hf model_type: LlamaForCausalLM tokenizer_type: CodeLlamaTokenizer load_in_8bit: true load_in_4bit: false strict: false datasets: - path: beneyal/spider-qpl-alpaca type: alpaca dataset_prepared_path: val_set_size: 0.05 output_dir: ./outputs/lora-out sequence_len: 4096 sample_packing: false pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: spider-qpl wandb_entity: wandb_watch: wandb_name: codellama-7b-lora wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 4 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true s2_attention: warmup_steps: 10 evals_per_epoch: 4 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" ```

# outputs/lora-out This model is a fine-tuned version of [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2055 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.0333 | 0.0013 | 1 | 1.9589 | | 0.0474 | 0.2505 | 195 | 0.1516 | | 0.0585 | 0.5010 | 390 | 0.1433 | | 0.0321 | 0.7514 | 585 | 0.1540 | | 0.0195 | 1.0019 | 780 | 0.1493 | | 0.0314 | 1.2524 | 975 | 0.1599 | | 0.0053 | 1.5029 | 1170 | 0.1737 | | 0.0095 | 1.7534 | 1365 | 0.1667 | | 0.0237 | 2.0039 | 1560 | 0.1730 | | 0.0131 | 2.2543 | 1755 | 0.1917 | | 0.0038 | 2.5048 | 1950 | 0.1907 | | 0.0089 | 2.7553 | 2145 | 0.1851 | | 0.0025 | 3.0058 | 2340 | 0.1894 | | 0.0018 | 3.2563 | 2535 | 0.2001 | | 0.0039 | 3.5067 | 2730 | 0.2026 | | 0.0014 | 3.7572 | 2925 | 0.2055 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.2 - Pytorch 2.1.2+cu118 - Datasets 2.19.1 - Tokenizers 0.19.1