zett-hypernetwork-xlm-roberta-base / configuration_hypernet.py
benjamin's picture
Upload ZettHypernet
abe4cc4 verified
from transformers import PretrainedConfig
class ZettHypernetConfig(PretrainedConfig):
def __init__(
self,
hn_model_name_or_path: str = "roberta-base",
hn_surface_maxlen: int = 16,
hn_n_layers: int = 3,
n_embd: int = 768,
hn_hidden_size: int = None,
hn_intermediate_size: int = None,
hn_rescale_embeddings: bool = False,
use_unigram_bias: bool = False,
hn_embed_target_priors: bool = False,
hn_add_inter_token_attention: bool = False,
hn_inter_token_attention_bias_by_priors: bool = False,
hn_inter_token_attention_bias_scaler: float = 1.0,
hn_n_inter_token_blocks: int = 16,
hn_language_adapter_bottleneck_dim: int = 0,
hn_embed_using_source_embeddings: bool = False,
hn_concat_last_hidden_state: bool = False,
hn_single_head: bool = False,
hn_predict_bias: bool = True,
hn_num_attention_heads: int = None,
hn_embed_lang_id: bool = False,
hn_model_type: str = "roberta",
n_langs: int = None, # set in train.py
**kwargs
):
super().__init__(**kwargs)
self.model_type = "zett_hypernetwork"
self.hn_model_name_or_path = hn_model_name_or_path
self.hn_surface_maxlen = hn_surface_maxlen
self.hn_n_layers = hn_n_layers
self.n_embd = n_embd
self.hn_hidden_size = hn_hidden_size
self.hn_intermediate_size = hn_intermediate_size
self.hn_rescale_embeddings = hn_rescale_embeddings
self.use_unigram_bias = use_unigram_bias
self.hn_embed_target_priors = hn_embed_target_priors
self.hn_add_inter_token_attention = hn_add_inter_token_attention
self.hn_inter_token_attention_bias_by_priors = (
hn_inter_token_attention_bias_by_priors
)
self.hn_inter_token_attention_bias_scaler = hn_inter_token_attention_bias_scaler
self.hn_n_inter_token_blocks = hn_n_inter_token_blocks
self.hn_language_adapter_bottleneck_dim = hn_language_adapter_bottleneck_dim
self.hn_embed_using_source_embeddings = hn_embed_using_source_embeddings
self.hn_concat_last_hidden_state = hn_concat_last_hidden_state
self.hn_single_head = hn_single_head
self.hn_predict_bias = hn_predict_bias
self.hn_num_attention_heads = hn_num_attention_heads
self.hn_embed_lang_id = hn_embed_lang_id
self.hn_model_type = hn_model_type
self.n_langs = n_langs