File size: 9,059 Bytes
65bf81e
1069c7f
 
 
 
 
 
 
 
 
65bf81e
 
 
 
1069c7f
 
 
65bf81e
 
1069c7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa9cde0
65bf81e
 
7ea694b
 
3c1a25e
8f2f500
d3f5346
6600bcd
41ddc9f
65bf81e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3f5346
65bf81e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5140497
 
 
 
 
 
 
 
 
 
 
 
65bf81e
 
 
205083a
 
 
 
 
65bf81e
 
 
205083a
 
 
f87b39c
 
 
 
 
 
 
 
205083a
65bf81e
 
 
1069c7f
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
---
language:
- en
- ko
library_name: transformers
tags:
- pytorch
- Yi-Ko
- 01-ai
- Yi
extra_gated_heading: Access beomi/Yi-Ko-6B on Hugging Face
extra_gated_button_content: Submit
extra_gated_fields:
  I agree to share my name, email address and username: checkbox
  ? I confirm that I understand this project is for research purposes only, and confirm
    that I agree to follow the LICENSE of this model
  : checkbox
pipeline_tag: text-generation
inference: false
model-index:
- name: Yi-Ko-6B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 48.89
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=beomi/Yi-Ko-6B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 74.48
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=beomi/Yi-Ko-6B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 55.72
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=beomi/Yi-Ko-6B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 37.09
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=beomi/Yi-Ko-6B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 72.93
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=beomi/Yi-Ko-6B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 12.51
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=beomi/Yi-Ko-6B
      name: Open LLM Leaderboard
license: apache-2.0
---

> Update @ 2024.01.29 New Model [beomi/Yi-Ko-DUS-9B](https://huggingface.co/beomi/Yi-Ko-DUS-9B) Released! 🎉

> Update @ 2023.12.03 Yi-Ko(KoEN)-6B Achieved #1🥇 Pretrained Models at [Open Korean LLM Leaderboard](https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard)! 🎉

> Update @ 2023.12.01 Alpha Release of Yi-Ko(KoEN)-6B model 🎉

# **beomi/Yi-Ko-6B**

Yi-Ko series models serve as advanced iterations of 01-ai/Yi models, 
benefiting from an expanded vocabulary and the inclusion of Korean/English corpus in its further pretraining. 
Just like its predecessor, Yi-Ko series models operate within the broad range of generative text models that stretch from 6 billion to 34 billion parameters.
This repository focuses on the **6B** pretrained version,
which is tailored to fit the Hugging Face Transformers format. 
For access to the other models, feel free to consult the index provided below.

## Model Details

**Model Developers** Junbum Lee (Beomi)

**Variations** Yi-Ko series will come in a range of parameter sizes — 6B and 34B variations.

**Input** Models input text only.

**Output** Models generate text only.

**Model Architecture** 

Yi-Ko series models are an auto-regressive language model that uses an optimized transformer architecture based on Llama-2*.

<small>*Yi model architecture is based on Llama2, so it can be loaded via `LlamaForCausalLM` class on HF.</small>

|Model Name|Training Data|Params|Context Length|GQA|Trained Tokens|LR|Batch Size(per step)|
|---|---|---|---|---|---|---|---|
|Yi-Ko-6B|*A mix of Korean + English online data*|6B|4k|O|>60B|5e<sup>-5</sup>|2048|

**Vocab Expansion**

| Model Name | Vocabulary Size | Description | 
| --- | --- | --- |
| Original Yi-Series | 64000 | Sentencepiece BPE |
| **Expanded Yi-Ko Series** | 78464 | Sentencepiece BPE. Added Korean vocab and merges |

**Tokenizing "안녕하세요, 오늘은 날씨가 좋네요.ㅎㅎ"**

| Model | # of tokens | Tokens |
| --- | --- | --- |
| Original Yi-Series | 47 | `['<0xEC>', '<0x95>', '<0x88>', '<0xEB>', '<0x85>', '<0x95>', '하', '<0xEC>', '<0x84>', '<0xB8>', '<0xEC>', '<0x9A>', '<0x94>', ',', '▁', '<0xEC>', '<0x98>', '<0xA4>', '<0xEB>', '<0x8A>', '<0x98>', '은', '▁', '<0xEB>', '<0x82>', '<0xA0>', '<0xEC>', '<0x94>', '<0xA8>', '가', '▁', '<0xEC>', '<0xA2>', '<0x8B>', '<0xEB>', '<0x84>', '<0xA4>', '<0xEC>', '<0x9A>', '<0x94>', '.', '<0xE3>', '<0x85>', '<0x8E>', '<0xE3>', '<0x85>', '<0x8E>']` |
| **Expanded Yi-Ko Series** | 10 | `['▁안녕', '하세요', ',', '▁오늘은', '▁날', '씨가', '▁좋네요', '.', 'ㅎ', 'ㅎ']` |
|<small>*Equal Korean vocab with Llama-2-Ko Series</small>||

**Tokenizing "Llama 2: Open Foundation and Fine-Tuned Chat Models"**

| Model | # of tokens | Tokens |
| --- | --- | --- |
| Original Yi-Series | 21 | `['The', '▁Y', 'i', '▁series', '▁models', '▁are', '▁large', '▁language', '▁models', '▁trained', '▁from', '▁scratch', '▁by', '▁developers', '▁at', '▁', '0', '1', '.', 'AI', '.']` |
| **Expanded Yi-Ko Series** | 21 | `['▁The', '▁Y', 'i', '▁series', '▁models', '▁are', '▁large', '▁language', '▁models', '▁trained', '▁from', '▁scratch', '▁by', '▁developers', '▁at', '▁', '0', '1', '.', 'AI', '.']` |
|<small>*Equal Korean vocab with Llama-2-Ko Series</small>| | <small>*Since **Expanded Yi-Ko Series** prepends `_` at the beginning of the text(to ensure same tokenization for Korean sentences), it shows negilible difference for the first token on English tokenization. </small>|

# **Model Benchmark**

## LM Eval Harness - Korean (polyglot branch)

| beomi/Yi-Ko-6B                   |        0 |        5 |       10 |       50 |
|:---------------------------------|---------:|---------:|---------:|---------:|
| kobest_boolq (macro_f1)          | 0.705806 | 0.79905  | 0.814299 | 0.81704  |
| kobest_copa (macro_f1)           | 0.775604 | 0.808899 | 0.816866 | 0.842943 |
| kobest_hellaswag (macro_f1)      | 0.500876 | 0.498673 | 0.493507 | 0.492183 |
| kobest_sentineg (macro_f1)       | 0.404371 | 0.967254 | 0.982368 | 0.974811 |
| kohatespeech (macro_f1)          | 0.353428 | 0.351804 | 0.402423 | 0.503764 |
| kohatespeech_apeach (macro_f1)   | 0.337667 | 0.498679 | 0.471962 | 0.608401 |
| kohatespeech_gen_bias (macro_f1) | 0.124535 | 0.484745 | 0.474475 | 0.461714 |
| korunsmile (f1)                  | 0.382804 | 0.349344 | 0.391383 | 0.432875 |
| nsmc (acc)                       | 0.55064  | 0.8801   | 0.89866  | 0.9071   |
| pawsx_ko (acc)                   | 0.5145   | 0.54     | 0.538    | 0.5165   |

## LICENSE

[Yi Series Models Community License Agreement](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE)

> For commercial purpose,
> Follow [Yi Series Models Community License Agreement](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) to acquire Yi Series commercial license,
> and mailto: jun@beomi.net to acquire Yi-Ko sereis commercial license.

## Citation

Please use this bibtex below:

```
@misc {lee_junbum_2024,
	author       = { {Lee Junbum} },
	title        = { Yi-Ko-6B (Revision 205083a) },
	year         = 2024,
	url          = { https://huggingface.co/beomi/Yi-Ko-6B },
	doi          = { 10.57967/hf/1708 },
	publisher    = { Hugging Face }
}
```

## Acknowledgement

The training is supported by [TPU Research Cloud](https://sites.research.google/trc/) program.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_beomi__Yi-Ko-6B)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |50.27|
|AI2 Reasoning Challenge (25-Shot)|48.89|
|HellaSwag (10-Shot)              |74.48|
|MMLU (5-Shot)                    |55.72|
|TruthfulQA (0-shot)              |37.09|
|Winogrande (5-shot)              |72.93|
|GSM8k (5-shot)                   |12.51|