--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: xtremedistil-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9265 - task: type: text-classification name: Text Classification dataset: name: emotion type: emotion config: default split: test metrics: - name: Accuracy type: accuracy value: 0.926 verified: true - name: Precision Macro type: precision value: 0.8855308537052737 verified: true - name: Precision Micro type: precision value: 0.926 verified: true - name: Precision Weighted type: precision value: 0.9281282413639949 verified: true - name: Recall Macro type: recall value: 0.8969894921856228 verified: true - name: Recall Micro type: recall value: 0.926 verified: true - name: Recall Weighted type: recall value: 0.926 verified: true - name: F1 Macro type: f1 value: 0.8903400738742536 verified: true - name: F1 Micro type: f1 value: 0.926 verified: true - name: F1 Weighted type: f1 value: 0.9265018282649476 verified: true - name: loss type: loss value: 0.2258329838514328 verified: true --- # xtremedistil-emotion This model is a fine-tuned version of [microsoft/xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Accuracy: 0.9265 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 128 - eval_batch_size: 8 - seed: 42 - num_epochs: 24 ### Training results
Epoch	Training Loss	Validation Loss	Accuracy
1	No log	1.238589	0.609000
2	No log	0.934423	0.714000
3	No log	0.768701	0.742000
4	1.074800	0.638208	0.805500
5	1.074800	0.551363	0.851500
6	1.074800	0.476291	0.875500
7	1.074800	0.427313	0.883500
8	0.531500	0.392633	0.886000
9	0.531500	0.357979	0.892000
10	0.531500	0.330304	0.899500
11	0.531500	0.304529	0.907000
12	0.337200	0.287447	0.918000
13	0.337200	0.277067	0.921000
14	0.337200	0.259483	0.921000
15	0.337200	0.257564	0.916500
16	0.246200	0.241970	0.919500
17	0.246200	0.241537	0.921500
18	0.246200	0.235705	0.924500
19	0.246200	0.237325	0.920500
20	0.201400	0.229699	0.923500
21	0.201400	0.227426	0.923000
22	0.201400	0.228554	0.924000
23	0.201400	0.226941	0.925500
24	0.184300	0.225816	0.926500