File size: 8,109 Bytes
d11ed8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import re
from functools import cache

import torch
from PIL.Image import Image
from transformers import PaliGemmaConfig as HFPaliGemmaConfig
from transformers import PaliGemmaForConditionalGeneration as HFPaliGemmaForConditionalGeneration
from transformers import PaliGemmaProcessor as HFPaliGemmaProcessor
from transformers.utils import TensorType

from pretrain_mm.processor.processor import ProcessorMixin, TextProcessorMixin
from pretrain_mm.processor.tokenizer_constants import SetConstants, TokenizerConstants
from pretrain_mm.utils.token_tag_utils import TagType, box_pattern, point_pattern, segment_str


"""
note, for patching this model atm need to fix casting in PaliGemmaProcessor._merge_input_ids_with_image_features

I am not sure exactly which devices/where the issue arises from so ended up just casting multiple things as otherwise
debugging/fixing on borah is a pain

if edited in place on borah, location @
`/bsuhome/gannett/mambaforge/envs/pt/lib/python3.11/site-packages/transformers/models/paligemma/modeling_paligemma.py`
then remove the cast

spaces with actual working implementation of seg/detect/etc


- https://huggingface.co/spaces/big-vision/paligemma-hf
    - this one has the VAE for decoding to mask
- https://huggingface.co/spaces/big-vision/paligemma
    - this one uses the big-vision stuff which is not ideal


models:
https://huggingface.co/google/paligemma-3b-ft-docvqa-896
https://huggingface.co/google/paligemma-3b-ft-ocrvqa-896
"""


MODEL_ID: str = "google/paligemma-3b-ft-docvqa-896"
PROCESSOR_IMAGE_MAX_SIZE: int = 1024  # loc/seg must be scaled to this max

_r_loc = r"<loc(\d{4})>"
re_loc = re.compile(_r_loc)
re_loc_point = re.compile(_r_loc * 2)
re_loc_box = re.compile(_r_loc * 4)

re_seg = re.compile(r"<seg(\d{3})>")


def _scale_val(val: int, dim_scale_factor: int, max_size: int = PROCESSOR_IMAGE_MAX_SIZE):
    return min(int(val * dim_scale_factor), max_size)


def _make_seg_text(val: int, tag: str = "loc", digits: int = 4):
    return f"<{tag}{val:0>{digits}}>"


@cache
def _make_scale_dim_func(image_dim: int, max_size: int = PROCESSOR_IMAGE_MAX_SIZE):
    # image_dim is either height or width
    def func(*vals: int):
        return [round((int(val) / max_size) * image_dim) for val in vals]

    return func


class PaliGemmaConfig(HFPaliGemmaConfig):
    pass


class PaliGemmaConstantsClass(TokenizerConstants):
    # from the processor.tokenizer
    bos_token: str = "<bos>"
    eos_token: str = "<eos>"
    image_placeholder_token: str = "<image>"

    repr_bbox_open_text: str = "<box>"
    repr_bbox_close_text: str = "</box>"
    repr_point_open_text: str = "<point>"
    repr_point_close_text: str = "</point>"


PaliGemmaConstants = PaliGemmaConstantsClass()


class PaliGemmaForConditionalGeneration(HFPaliGemmaForConditionalGeneration):
    pass


@SetConstants(PaliGemmaConstants)
class PaliGemmaProcessor(HFPaliGemmaProcessor, ProcessorMixin, TextProcessorMixin):
    constants: PaliGemmaConstantsClass

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self._call = super().__call__

    def __call__(
        self,
        text=None,
        images=None,
        tokenize_newline_separately=True,
        padding=False,
        truncation=None,
        max_length=None,
        return_tensors=TensorType.PYTORCH,
        do_resize=None,
        do_normalize=None,
        image_mean=None,
        image_std=None,
        data_format="channels_first",
        input_data_format=None,
        resample: "PILImageResampling" = None,  # noqa: F821 # type: ignore
        do_convert_rgb: bool = None,
        do_thumbnail: bool = None,
        do_align_long_axis: bool = None,
        do_rescale: bool = None,
        suffix=None,
        extra: dict | bool = False,
        **kwargs,
    ):
        suffix = suffix or kwargs.get("label", None)
        if text:
            text = self.preprocess_text(text, images)

        if suffix:
            suffix = self.preprocess_text(suffix, images)

        batch = super().__call__(
            text=text,
            images=images,
            tokenize_newline_separately=tokenize_newline_separately,
            padding=padding,
            truncation=truncation,
            max_length=max_length,
            return_tensors=return_tensors,
            do_resize=do_resize,
            do_normalize=do_normalize,
            image_mean=image_mean,
            image_std=image_std,
            data_format=data_format,
            input_data_format=input_data_format,
            resample=resample,
            do_convert_rgb=do_convert_rgb,
            do_thumbnail=do_thumbnail,
            do_align_long_axis=do_align_long_axis,
            do_rescale=do_rescale,
            suffix=suffix,
        )

        batch = self.create_attachable(batch, extra)(text=text, images=images, label=suffix)

        return batch

    def decode(self, outputs: torch.Tensor, do_post: bool = True, **kwargs) -> str:
        """this is specific to PaliGemma"""
        # converts the tokens to text
        outputs = self.tokenizer.decode(outputs, **kwargs)
        return outputs

    def preprocess_text(
        self,
        text: str,
        images: list[torch.Tensor | Image] | Image = None,
        max_size: int = PROCESSOR_IMAGE_MAX_SIZE,
    ) -> str:
        # not sure what to do for multiple images if need to scale

        if isinstance(images, list):
            images = images[0]

        if images is not None:
            image_width, image_height = images.size
            height_scale = max_size / image_height
            width_scale = max_size / image_width

        segments = segment_str(text, box_pattern=box_pattern, point_pattern=point_pattern)

        out_text = ""
        for seg, seg_type in segments:
            if seg_type:
                if seg_type == TagType.POINT:
                    x, y = map(int, seg)
                    # Scale the coordinates
                    scaled_x = _make_seg_text(_scale_val(x, width_scale, max_size))
                    scaled_y = _make_seg_text(_scale_val(y, height_scale, max_size))
                    # model uses y, x in examples
                    scaled_toks = f"{scaled_y}{scaled_x} point"
                elif seg_type == TagType.BOX:
                    x1, y1, x2, y2 = map(int, seg)
                    # Scale the coordinates
                    scaled_x1 = _make_seg_text(_scale_val(x1, width_scale, max_size))
                    scaled_y1 = _make_seg_text(_scale_val(y1, height_scale, max_size))
                    scaled_x2 = _make_seg_text(_scale_val(x2, width_scale, max_size))
                    scaled_y2 = _make_seg_text(_scale_val(y2, height_scale, max_size))
                    # they do y1, x1, y2, x2 in examples
                    scaled_toks = f"{scaled_y1}{scaled_x1}{scaled_y2}{scaled_x2} box"
                out_text += scaled_toks
            else:
                out_text += seg
        return out_text

    def handle_token_loc_seg(self, text: str, image_height: int, image_width: int):
        _scale_height = _make_scale_dim_func(image_height)
        _scale_width = _make_scale_dim_func(image_width)
        box_tags = ("<box>", "</box>")
        point_tags = ("<point>", "</point>")

        def _make_text(tag_open: str, tag_close: str, *vals):
            return (
                text[: tag_open[1]] + f"{tag_open[0]}{', '.join(map(str, vals))}{tag_close[0]}" + text[tag_close[1] :]
            )

        def _make_yx(points: list[int]):
            return _scale_height(*points[0::2]), _scale_width(*points[1::2])

        while loc_match := re_loc_box.match(text):
            start_idx, end_idx = zip(box_tags, loc_match.span())
            (y1, y2), (x1, x2) = _make_yx(list(loc_match.groups()))
            text = _make_text(start_idx, end_idx, y1, x1, y2, x2)

        while loc_match := re_loc_point.match(text):
            tag_open, tag_close = zip(point_tags, loc_match.span())
            (y1,), (x1,) = _make_yx(list(loc_match.groups()))
            text = _make_text(tag_open, tag_close, y1, x1)

        return text