--- license: apache-2.0 tags: - generated_from_trainer datasets: - librispeech_asr metrics: - wer base_model: openai/whisper-small model-index: - name: whisper-small-libirClean-vs-commonNative-en results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: librispeech_asr type: librispeech_asr config: clean split: train args: clean metrics: - type: wer value: 85.53786155346116 name: Wer --- # whisper-small-libirClean-vs-commonNative-en This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the librispeech_asr dataset. It achieves the following results on the evaluation set: - Loss: 2.3358 - Wer: 85.5379 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 1.2481 | 0.08 | 10 | 3.5688 | 21.1895 | | 0.7793 | 0.16 | 20 | 2.8307 | 38.9990 | | 0.5443 | 0.24 | 30 | 2.4196 | 67.0458 | | 0.4484 | 0.32 | 40 | 2.2903 | 71.1732 | | 0.4086 | 0.4 | 50 | 2.3358 | 85.5379 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2