Initial commit of A2C HalfCheetahBullet
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-HalfCheetahBulletEnv-v0.zip +3 -0
- a2c-HalfCheetahBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-HalfCheetahBulletEnv-v0/data +105 -0
- a2c-HalfCheetahBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-HalfCheetahBulletEnv-v0/policy.pth +3 -0
- a2c-HalfCheetahBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-HalfCheetahBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- HalfCheetahBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: HalfCheetahBulletEnv-v0
|
16 |
+
type: HalfCheetahBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 937.40 +/- 138.50
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **HalfCheetahBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **HalfCheetahBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-HalfCheetahBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6aa5fc4209549fd9dcb6f21ed56d5994402cf218a5f9c9fb411afd72a3157f4e
|
3 |
+
size 124951
|
a2c-HalfCheetahBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
a2c-HalfCheetahBulletEnv-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f3f55575950>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3f555759e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3f55575a70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3f55575b00>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f3f55575b90>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f3f55575c20>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3f55575cb0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f3f55575d40>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3f55575dd0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3f55575e60>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3f55575ef0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f3f555ce1b0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gASVdwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsahZRoColDaAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsahZRoColDaAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsahZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsahZRoKolDGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
26
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gASVrwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsGhZRoColDGAAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLBoWUaAqJQxgAAIA/AACAPwAAgD8AAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSwaFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMGAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsGhZRoKolDBgEBAQEBAZR0lGKMCl9ucF9yYW5kb22UTnViLg==",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
6
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1. -1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1. 1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 3000000,
|
62 |
+
"_total_timesteps": 3000000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1668738801664015264,
|
67 |
+
"learning_rate": 0.00096,
|
68 |
+
"tensorboard_log": "./tensorboard",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gASVLQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLGoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKgAQAAvV56QL0lhCZKbuA85Zmwv6rEbKQsjRQ9WG7gvMFU9b8SzBG+pFR7ObW/AEAKqjA8NyuovCZLeTqe6nfABMb8uzJIQb9IG8y79nqQPxqtozsi0oS/8097vklvp77UC6C/6AOtvdkNCL69XnpAvSWEJkpu4DzlmbC/qsRspCyNFD1YbuC8wVT1v05GZ72kVHs5eeAFQAqqMDz2dZk9Jkt5Ogj9YcAExvy7tntVv0gbzLs0Woo/Gq2jOyLShL/zT3u+SW+nvtQLoL/oA6292Q0Ivr1eekC9JYQmSm7gPOWZsL+qxGykLI0UPVhu4LzBVPW/uUzNvKRUezk4lBdACqowPHI8Qj4mS3k6KV5IwATG/LsEdDu/SBvMu+aTTD8araM7ItKEv/NPe75Jb6e+1Augv+gDrb3ZDQi+vV56QL0lhCZKbuA85Zmwv6rEbKQsjRQ9WG7gvMFU9b9pcq6+pFR7Odzr/D8KqjA80gzHPSZLeTpSrU/ABMb8uyGfYL9IG8y7EZOdPxqtozsi0oS/8097vklvp77UC6C/6AOtvdkNCL6UdJRiLg=="
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAEBAQGUdJRiLg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gASVLQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLGoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKgAQAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDZPty+AAAAAGE6wrwAAAAASSnavgAAAABuQKg+AAAAAO1i07wAAAAAky2TPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJid274AAAAAUfnYvQAAAADayzC+AAAAAAF5Xz4AAAAAx4/SPQAAAAC6FZQ/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJIumvgAAAADXzre9AAAAANWMW74AAAAAzR5rPgAAAAAyNqI9AAAAAH+Pkz8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA92aW+AAAAAG8i37wAAAAAlyKivgAAAABlc4A+AAAAAEHqxT0AAAAAppiWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
|
84 |
+
},
|
85 |
+
"_episode_num": 0,
|
86 |
+
"use_sde": true,
|
87 |
+
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": 0.0,
|
89 |
+
"ep_info_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJckpJFspG6MAWyUTegDjAF0lEdAs/dZVfeDWnV9lChoBkdAj5jidrftQmgHTegDaAhHQLP3WX8wYch1fZQoaAZHQJAt4vL5h0BoB03oA2gIR0Cz91mo73fydX2UKGgGR0CTmLcLBsQ/aAdN6ANoCEdAs/dZ5Z8rqnV9lChoBkdAly5/779AHGgHTegDaAhHQLP9SMIeHSF1fZQoaAZHQJdW3AHmig1oB03oA2gIR0Cz/Ujv/io9dX2UKGgGR0CY7ngezUqhaAdN6ANoCEdAs/1JG8VYZHV9lChoBkdAmSJ7LhaTwGgHTegDaAhHQLP9SUjs2Nx1fZQoaAZHQJhrIo+fRNRoB03oA2gIR0C0A0JbD/EPdX2UKGgGR0CXYlFkhA4XaAdN6ANoCEdAtANCncclxHV9lChoBkdAl/kYo3JgcGgHTegDaAhHQLQDQs8gZCR1fZQoaAZHQI4xlNYbKihoB03oA2gIR0C0A0MAFPi2dX2UKGgGR0CVeRj6eoUBaAdN6ANoCEdAtAkepIczZnV9lChoBkdAlPA84T9KmWgHTegDaAhHQLQJHtQKrrB1fZQoaAZHQHm3CcLBsRBoB03oA2gIR0C0CR8PSUkfdX2UKGgGR0CU00YF7laKaAdN6ANoCEdAtAkfRBu4w3V9lChoBkdAhjC6HKwIMWgHTegDaAhHQLQQdRyfcvd1fZQoaAZHQJdZaO+7Dl5oB03oA2gIR0C0EHVJg9eQdX2UKGgGR0CWnkH2AXl9aAdN6ANoCEdAtBB1cVxjrnV9lChoBkdAlyi0tRNypGgHTegDaAhHQLQQdamoBJZ1fZQoaAZHQJfCuff4yoJoB03oA2gIR0C0Fm+WKMvRdX2UKGgGR0CY7TePJaJRaAdN6ANoCEdAtBZv0Eovz3V9lChoBkdAmOVDRYzSC2gHTegDaAhHQLQWb/lQuVZ1fZQoaAZHQJflk/Y8Md9oB03oA2gIR0C0FnBFiKBNdX2UKGgGR0CWrvQwblzVaAdN6ANoCEdAtBx2dSVGC3V9lChoBkdAluQR/mT1TWgHTegDaAhHQLQcdpqASWZ1fZQoaAZHQJPidqDbrTpoB03oA2gIR0C0HHbIPsiTdX2UKGgGR0Ca15VUuL75aAdN6ANoCEdAtBx3ELpiZ3V9lChoBkdAlFwVXvH932gHTegDaAhHQLQihePaL4x1fZQoaAZHQJm5sK+i8FpoB03oA2gIR0C0IoYM4LkTdX2UKGgGR0CZop0se4kNaAdN6ANoCEdAtCKGSFGoaXV9lChoBkdAl14FlsguAmgHTegDaAhHQLQihosI3R51fZQoaAZHQJeueNsFdLRoB03oA2gIR0C0KINorWiDdX2UKGgGR0CVh6HZ9NN8aAdN6ANoCEdAtCiDoaDPGHV9lChoBkdAmoYSJbdJrmgHTegDaAhHQLQog9CNS611fZQoaAZHQJbIzmNipehoB03oA2gIR0C0KIQOe8PGdX2UKGgGR0CTI9u+h4+saAdN6ANoCEdAtC565kK/mHV9lChoBkdAkezvZVXFLmgHTegDaAhHQLQuexAjY7J1fZQoaAZHQJU0dnyup0hoB03oA2gIR0C0Lns2aUiZdX2UKGgGR0CXU47fpD/maAdN6ANoCEdAtC57ZamoBXV9lChoBkdAmXD0CvHLimgHTegDaAhHQLQ0bbpeNT91fZQoaAZHQJN4UJBw++xoB03oA2gIR0C0NG35N47jdX2UKGgGR0CYHvmdRR/FaAdN6ANoCEdAtDRuHymQ83V9lChoBkdAllVGYSg5BGgHTegDaAhHQLQ0bktEofF1fZQoaAZHQJfE+nP3SKFoB03oA2gIR0C0Olwc1fmcdX2UKGgGR0CZ3vQRf4RFaAdN6ANoCEdAtDpcT0xubnV9lChoBkdAmrUIb4rSVmgHTegDaAhHQLQ6XH1OCXh1fZQoaAZHQJcXn7Kq4pdoB03oA2gIR0C0Olyq2jO+dX2UKGgGR0Cay1aRISUUaAdN6ANoCEdAtEG6Ut7KJXV9lChoBkdAlm/G6ClJpWgHTegDaAhHQLRBuoXsPat1fZQoaAZHQJvMg1pCa7VoB03oA2gIR0C0Qbq/qPfbdX2UKGgGR0CZattQ9A5aaAdN6ANoCEdAtEG6/SH/LnV9lChoBkdAm55L2pQ1rWgHTegDaAhHQLRHq4tHxz91fZQoaAZHQJo/vN1QqI9oB03oA2gIR0C0R6vBWPtEdX2UKGgGR0CXZMQ2uPmxaAdN6ANoCEdAtEer7+DODHV9lChoBkdAmtGHeFcps2gHTegDaAhHQLRHrCIDYAd1fZQoaAZHQJpbMomXw9doB03oA2gIR0C0TaEytV7ydX2UKGgGR0CaPMla8pTdaAdN6ANoCEdAtE2hYp2ECnV9lChoBkdAm4NHBciW3WgHTegDaAhHQLRNoZWq95B1fZQoaAZHQJpx2xOclPdoB03oA2gIR0C0TaHHJcPfdX2UKGgGR0CYOVXq7iAEaAdN6ANoCEdAtFN/HGS6lXV9lChoBkdAlmYpjc2zfWgHTegDaAhHQLRTf0Syt3h1fZQoaAZHQJWP40elsP9oB03oA2gIR0C0U39zwMH9dX2UKGgGR0CaGHUrkKeDaAdN6ANoCEdAtFN/rqt5lnV9lChoBkdAlGG2Mju8b2gHTegDaAhHQLRZYWJaaCt1fZQoaAZHQJYTOr2g399oB03oA2gIR0C0WWHTmW+odX2UKGgGR0CUjPhUzbeuaAdN6ANoCEdAtFliKiwjdHV9lChoBkdAlk4EjgQ6IWgHTegDaAhHQLRZYnSfDk51fZQoaAZHQJrZoiX6ZYxoB03oA2gIR0C0X45ZSvTxdX2UKGgGR0CYNG/EOy3TaAdN6ANoCEdAtF+Oj1wo9nV9lChoBkdAlzI0bLlmvmgHTegDaAhHQLRfjshxHXp1fZQoaAZHQJGEQDyOJchoB03oA2gIR0C0X47/n4fwdX2UKGgGR0COhEGQCCBgaAdN6ANoCEdAtGWNW5painV9lChoBkdAkkUiFoL5RGgHTegDaAhHQLRljYpDu0F1fZQoaAZHQI0tePBBRhtoB03oA2gIR0C0ZY25UcXFdX2UKGgGR0CUqNv/zasZaAdN6ANoCEdAtGWN+b3GoHV9lChoBkdAi/g+lsP8RGgHTegDaAhHQLRspY0EX+F1fZQoaAZHQIvWdNQCSzRoB03oA2gIR0C0bKX0PH1fdX2UKGgGR0CPE7zvJA+qaAdN6ANoCEdAtGymT7l7t3V9lChoBkdAk536MBIWg2gHTegDaAhHQLRsps+3Yth1fZQoaAZHQJMq8zCUHIJoB03oA2gIR0C0dFepbUw0dX2UKGgGR0CZAwXO4XoDaAdN6ANoCEdAtHRX5Lytm3V9lChoBkdAkVpvjsD4g2gHTegDaAhHQLR0WB/I8yN1fZQoaAZHQJLuKu3c581oB03oA2gIR0C0dFhPwd8zdX2UKGgGR0COaO2oegctaAdN6ANoCEdAtHpEdQwbl3V9lChoBkdAmMPxqfvnbWgHTegDaAhHQLR6RJ+DvmZ1fZQoaAZHQJp/V7v5P/JoB03oA2gIR0C0ekTNhVlxdX2UKGgGR0CYqqczZYgaaAdN6ANoCEdAtHpE+Sr5qXV9lChoBkdAmUQpZOi35WgHTegDaAhHQLSAOjKgZjx1fZQoaAZHQJp+V6sySFJoB03oA2gIR0C0gDpi3G4rdX2UKGgGR0CZ8KpHZsbeaAdN6ANoCEdAtIA6kyk9EHV9lChoBkdAmkJ4oRZlnWgHTegDaAhHQLSAOszEaVF1fZQoaAZHQJjT8oQWepZoB03oA2gIR0C0hjIigTRIdX2UKGgGR0CSkiQg9vCNaAdN6ANoCEdAtIYyXMQmNXV9lChoBkdAl9dReokzGmgHTegDaAhHQLSGMonrpq11fZQoaAZHQJnJBBkZrHloB03oA2gIR0C0hjLHhjvvdX2UKGgGR0CaEixY7q6faAdN6ANoCEdAtIwogKWszXV9lChoBkdAlDPMVgx8D2gHTegDaAhHQLSMKL127nR1fZQoaAZHQJINs0ygwoNoB03oA2gIR0C0jCkJBw+/dX2UKGgGR0CabfCemNzbaAdN6ANoCEdAtIwpPj4pMHVlLg=="
|
92 |
+
},
|
93 |
+
"ep_success_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
+
},
|
97 |
+
"_n_updates": 93750,
|
98 |
+
"n_steps": 8,
|
99 |
+
"gamma": 0.99,
|
100 |
+
"gae_lambda": 0.9,
|
101 |
+
"ent_coef": 0.0,
|
102 |
+
"vf_coef": 0.4,
|
103 |
+
"max_grad_norm": 0.5,
|
104 |
+
"normalize_advantage": false
|
105 |
+
}
|
a2c-HalfCheetahBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95b775439eeb07b647ce101bf193e4bf4092f88a58bb3080cf9f12204ce8f662
|
3 |
+
size 54142
|
a2c-HalfCheetahBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c73324a5171b2dea4dcebc94cc2ea9b03c4f7f03e077b5e65a934112af8cf5f3
|
3 |
+
size 54718
|
a2c-HalfCheetahBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-HalfCheetahBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.7.15
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3f55575950>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3f555759e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3f55575a70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3f55575b00>", "_build": "<function ActorCriticPolicy._build at 0x7f3f55575b90>", "forward": "<function ActorCriticPolicy.forward at 0x7f3f55575c20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3f55575cb0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3f55575d40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3f55575dd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3f55575e60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3f55575ef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3f555ce1b0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVdwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsahZRoColDaAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsahZRoColDaAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsahZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsahZRoKolDGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [26], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVrwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsGhZRoColDGAAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLBoWUaAqJQxgAAIA/AACAPwAAgD8AAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSwaFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMGAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsGhZRoKolDBgEBAQEBAZR0lGKMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [6], "low": "[-1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True]", "bounded_above": "[ True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 3000000, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1668738801664015264, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVLQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLGoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKgAQAAvV56QL0lhCZKbuA85Zmwv6rEbKQsjRQ9WG7gvMFU9b8SzBG+pFR7ObW/AEAKqjA8NyuovCZLeTqe6nfABMb8uzJIQb9IG8y79nqQPxqtozsi0oS/8097vklvp77UC6C/6AOtvdkNCL69XnpAvSWEJkpu4DzlmbC/qsRspCyNFD1YbuC8wVT1v05GZ72kVHs5eeAFQAqqMDz2dZk9Jkt5Ogj9YcAExvy7tntVv0gbzLs0Woo/Gq2jOyLShL/zT3u+SW+nvtQLoL/oA6292Q0Ivr1eekC9JYQmSm7gPOWZsL+qxGykLI0UPVhu4LzBVPW/uUzNvKRUezk4lBdACqowPHI8Qj4mS3k6KV5IwATG/LsEdDu/SBvMu+aTTD8araM7ItKEv/NPe75Jb6e+1Augv+gDrb3ZDQi+vV56QL0lhCZKbuA85Zmwv6rEbKQsjRQ9WG7gvMFU9b9pcq6+pFR7Odzr/D8KqjA80gzHPSZLeTpSrU/ABMb8uyGfYL9IG8y7EZOdPxqtozsi0oS/8097vklvp77UC6C/6AOtvdkNCL6UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAEBAQGUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVLQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLGoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKgAQAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDZPty+AAAAAGE6wrwAAAAASSnavgAAAABuQKg+AAAAAO1i07wAAAAAky2TPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJid274AAAAAUfnYvQAAAADayzC+AAAAAAF5Xz4AAAAAx4/SPQAAAAC6FZQ/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJIumvgAAAADXzre9AAAAANWMW74AAAAAzR5rPgAAAAAyNqI9AAAAAH+Pkz8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA92aW+AAAAAG8i37wAAAAAlyKivgAAAABlc4A+AAAAAEHqxT0AAAAAppiWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJckpJFspG6MAWyUTegDjAF0lEdAs/dZVfeDWnV9lChoBkdAj5jidrftQmgHTegDaAhHQLP3WX8wYch1fZQoaAZHQJAt4vL5h0BoB03oA2gIR0Cz91mo73fydX2UKGgGR0CTmLcLBsQ/aAdN6ANoCEdAs/dZ5Z8rqnV9lChoBkdAly5/779AHGgHTegDaAhHQLP9SMIeHSF1fZQoaAZHQJdW3AHmig1oB03oA2gIR0Cz/Ujv/io9dX2UKGgGR0CY7ngezUqhaAdN6ANoCEdAs/1JG8VYZHV9lChoBkdAmSJ7LhaTwGgHTegDaAhHQLP9SUjs2Nx1fZQoaAZHQJhrIo+fRNRoB03oA2gIR0C0A0JbD/EPdX2UKGgGR0CXYlFkhA4XaAdN6ANoCEdAtANCncclxHV9lChoBkdAl/kYo3JgcGgHTegDaAhHQLQDQs8gZCR1fZQoaAZHQI4xlNYbKihoB03oA2gIR0C0A0MAFPi2dX2UKGgGR0CVeRj6eoUBaAdN6ANoCEdAtAkepIczZnV9lChoBkdAlPA84T9KmWgHTegDaAhHQLQJHtQKrrB1fZQoaAZHQHm3CcLBsRBoB03oA2gIR0C0CR8PSUkfdX2UKGgGR0CU00YF7laKaAdN6ANoCEdAtAkfRBu4w3V9lChoBkdAhjC6HKwIMWgHTegDaAhHQLQQdRyfcvd1fZQoaAZHQJdZaO+7Dl5oB03oA2gIR0C0EHVJg9eQdX2UKGgGR0CWnkH2AXl9aAdN6ANoCEdAtBB1cVxjrnV9lChoBkdAlyi0tRNypGgHTegDaAhHQLQQdamoBJZ1fZQoaAZHQJfCuff4yoJoB03oA2gIR0C0Fm+WKMvRdX2UKGgGR0CY7TePJaJRaAdN6ANoCEdAtBZv0Eovz3V9lChoBkdAmOVDRYzSC2gHTegDaAhHQLQWb/lQuVZ1fZQoaAZHQJflk/Y8Md9oB03oA2gIR0C0FnBFiKBNdX2UKGgGR0CWrvQwblzVaAdN6ANoCEdAtBx2dSVGC3V9lChoBkdAluQR/mT1TWgHTegDaAhHQLQcdpqASWZ1fZQoaAZHQJPidqDbrTpoB03oA2gIR0C0HHbIPsiTdX2UKGgGR0Ca15VUuL75aAdN6ANoCEdAtBx3ELpiZ3V9lChoBkdAlFwVXvH932gHTegDaAhHQLQihePaL4x1fZQoaAZHQJm5sK+i8FpoB03oA2gIR0C0IoYM4LkTdX2UKGgGR0CZop0se4kNaAdN6ANoCEdAtCKGSFGoaXV9lChoBkdAl14FlsguAmgHTegDaAhHQLQihosI3R51fZQoaAZHQJeueNsFdLRoB03oA2gIR0C0KINorWiDdX2UKGgGR0CVh6HZ9NN8aAdN6ANoCEdAtCiDoaDPGHV9lChoBkdAmoYSJbdJrmgHTegDaAhHQLQog9CNS611fZQoaAZHQJbIzmNipehoB03oA2gIR0C0KIQOe8PGdX2UKGgGR0CTI9u+h4+saAdN6ANoCEdAtC565kK/mHV9lChoBkdAkezvZVXFLmgHTegDaAhHQLQuexAjY7J1fZQoaAZHQJU0dnyup0hoB03oA2gIR0C0Lns2aUiZdX2UKGgGR0CXU47fpD/maAdN6ANoCEdAtC57ZamoBXV9lChoBkdAmXD0CvHLimgHTegDaAhHQLQ0bbpeNT91fZQoaAZHQJN4UJBw++xoB03oA2gIR0C0NG35N47jdX2UKGgGR0CYHvmdRR/FaAdN6ANoCEdAtDRuHymQ83V9lChoBkdAllVGYSg5BGgHTegDaAhHQLQ0bktEofF1fZQoaAZHQJfE+nP3SKFoB03oA2gIR0C0Olwc1fmcdX2UKGgGR0CZ3vQRf4RFaAdN6ANoCEdAtDpcT0xubnV9lChoBkdAmrUIb4rSVmgHTegDaAhHQLQ6XH1OCXh1fZQoaAZHQJcXn7Kq4pdoB03oA2gIR0C0Olyq2jO+dX2UKGgGR0Cay1aRISUUaAdN6ANoCEdAtEG6Ut7KJXV9lChoBkdAlm/G6ClJpWgHTegDaAhHQLRBuoXsPat1fZQoaAZHQJvMg1pCa7VoB03oA2gIR0C0Qbq/qPfbdX2UKGgGR0CZattQ9A5aaAdN6ANoCEdAtEG6/SH/LnV9lChoBkdAm55L2pQ1rWgHTegDaAhHQLRHq4tHxz91fZQoaAZHQJo/vN1QqI9oB03oA2gIR0C0R6vBWPtEdX2UKGgGR0CXZMQ2uPmxaAdN6ANoCEdAtEer7+DODHV9lChoBkdAmtGHeFcps2gHTegDaAhHQLRHrCIDYAd1fZQoaAZHQJpbMomXw9doB03oA2gIR0C0TaEytV7ydX2UKGgGR0CaPMla8pTdaAdN6ANoCEdAtE2hYp2ECnV9lChoBkdAm4NHBciW3WgHTegDaAhHQLRNoZWq95B1fZQoaAZHQJpx2xOclPdoB03oA2gIR0C0TaHHJcPfdX2UKGgGR0CYOVXq7iAEaAdN6ANoCEdAtFN/HGS6lXV9lChoBkdAlmYpjc2zfWgHTegDaAhHQLRTf0Syt3h1fZQoaAZHQJWP40elsP9oB03oA2gIR0C0U39zwMH9dX2UKGgGR0CaGHUrkKeDaAdN6ANoCEdAtFN/rqt5lnV9lChoBkdAlGG2Mju8b2gHTegDaAhHQLRZYWJaaCt1fZQoaAZHQJYTOr2g399oB03oA2gIR0C0WWHTmW+odX2UKGgGR0CUjPhUzbeuaAdN6ANoCEdAtFliKiwjdHV9lChoBkdAlk4EjgQ6IWgHTegDaAhHQLRZYnSfDk51fZQoaAZHQJrZoiX6ZYxoB03oA2gIR0C0X45ZSvTxdX2UKGgGR0CYNG/EOy3TaAdN6ANoCEdAtF+Oj1wo9nV9lChoBkdAlzI0bLlmvmgHTegDaAhHQLRfjshxHXp1fZQoaAZHQJGEQDyOJchoB03oA2gIR0C0X47/n4fwdX2UKGgGR0COhEGQCCBgaAdN6ANoCEdAtGWNW5painV9lChoBkdAkkUiFoL5RGgHTegDaAhHQLRljYpDu0F1fZQoaAZHQI0tePBBRhtoB03oA2gIR0C0ZY25UcXFdX2UKGgGR0CUqNv/zasZaAdN6ANoCEdAtGWN+b3GoHV9lChoBkdAi/g+lsP8RGgHTegDaAhHQLRspY0EX+F1fZQoaAZHQIvWdNQCSzRoB03oA2gIR0C0bKX0PH1fdX2UKGgGR0CPE7zvJA+qaAdN6ANoCEdAtGymT7l7t3V9lChoBkdAk536MBIWg2gHTegDaAhHQLRsps+3Yth1fZQoaAZHQJMq8zCUHIJoB03oA2gIR0C0dFepbUw0dX2UKGgGR0CZAwXO4XoDaAdN6ANoCEdAtHRX5Lytm3V9lChoBkdAkVpvjsD4g2gHTegDaAhHQLR0WB/I8yN1fZQoaAZHQJLuKu3c581oB03oA2gIR0C0dFhPwd8zdX2UKGgGR0COaO2oegctaAdN6ANoCEdAtHpEdQwbl3V9lChoBkdAmMPxqfvnbWgHTegDaAhHQLR6RJ+DvmZ1fZQoaAZHQJp/V7v5P/JoB03oA2gIR0C0ekTNhVlxdX2UKGgGR0CYqqczZYgaaAdN6ANoCEdAtHpE+Sr5qXV9lChoBkdAmUQpZOi35WgHTegDaAhHQLSAOjKgZjx1fZQoaAZHQJp+V6sySFJoB03oA2gIR0C0gDpi3G4rdX2UKGgGR0CZ8KpHZsbeaAdN6ANoCEdAtIA6kyk9EHV9lChoBkdAmkJ4oRZlnWgHTegDaAhHQLSAOszEaVF1fZQoaAZHQJjT8oQWepZoB03oA2gIR0C0hjIigTRIdX2UKGgGR0CSkiQg9vCNaAdN6ANoCEdAtIYyXMQmNXV9lChoBkdAl9dReokzGmgHTegDaAhHQLSGMonrpq11fZQoaAZHQJnJBBkZrHloB03oA2gIR0C0hjLHhjvvdX2UKGgGR0CaEixY7q6faAdN6ANoCEdAtIwogKWszXV9lChoBkdAlDPMVgx8D2gHTegDaAhHQLSMKL127nR1fZQoaAZHQJINs0ygwoNoB03oA2gIR0C0jCkJBw+/dX2UKGgGR0CabfCemNzbaAdN6ANoCEdAtIwpPj4pMHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 93750, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ffd5e06ffe6ea331eb43d969697de8e16afd6f9c95cd972bfae71592f6d94cc
|
3 |
+
size 1080163
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 937.3951423737569, "std_reward": 138.4960609385685, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-11-18T04:11:24.251101"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6c448c01416112c573f0144af5b2d37a5c7544509f0f6d94ea1b8cbf75f7cbb9
|
3 |
+
size 2659
|