File size: 6,839 Bytes
078cc55 5268bc5 078cc55 2713ad1 078cc55 2713ad1 5268bc5 2713ad1 5268bc5 2713ad1 5268bc5 2713ad1 5268bc5 2713ad1 5268bc5 2713ad1 5268bc5 2713ad1 5268bc5 2713ad1 5268bc5 2713ad1 5268bc5 2713ad1 5268bc5 2713ad1 5268bc5 2713ad1 5268bc5 2713ad1 5268bc5 2713ad1 5268bc5 2713ad1 5268bc5 2713ad1 5268bc5 2713ad1 5268bc5 2713ad1 5268bc5 2713ad1 5268bc5 2713ad1 5268bc5 2713ad1 5268bc5 2713ad1 5268bc5 2713ad1 5268bc5 2713ad1 078cc55 33dd414 078cc55 ee7ad2b 74d3d72 6d28ee7 b736ec6 ee7ad2b 078cc55 fd52bbd 078cc55 c4a4c55 078cc55 af55c1f 078cc55 da010c8 078cc55 1ecb98a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
---
language:
- en
license: apache-2.0
tags:
- text-classification
- emotion
- pytorch
datasets:
- emotion
metrics:
- Accuracy, F1 Score
thumbnail: https://avatars3.githubusercontent.com/u/32437151?s=460&u=4ec59abc8d21d5feea3dab323d23a5860e6996a4&v=4
model-index:
- name: bhadresh-savani/bert-base-uncased-emotion
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: emotion
type: emotion
config: default
split: test
metrics:
- type: accuracy
value: 0.9265
name: Accuracy
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWQzNzA2MTFkY2RkNDMxYTFhOGUzMTdiZTgwODA3ODdmZTVhNTVjOTAwMGM5NjU1OGY0MjMzZWU0OTU2MzY1YiIsInZlcnNpb24iOjF9.f6iWK0iyU8_g32W2oMfh1ChevMsl0StI402cB6DNzJCYj9xywTnFltBY36jAJFDRK41HXdMnPMl64Bynr-Q9CA
- type: precision
value: 0.8859601677706858
name: Precision Macro
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTc2ZjRmMzYzNTE0ZDQ1ZDdkYWViYWNhZDhkOTE2ZDhmMDFjZmZiZjRkZWVlMzQ3MWE4NDNlYzlmM2I4ZGM2OCIsInZlcnNpb24iOjF9.jR-gFrrBIAfiYV352RDhK3nzgqIgNCPd55OhIcCfVdVAWHQSZSJXhFyg8yChC7DwoVmUQy1Ya-d8Hflp7Wi-AQ
- type: precision
value: 0.9265
name: Precision Micro
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDAyMWZjZTM5NWNjNTcyMWQzMWQyNDcyN2RlZTQyZTM4ZDQ4Y2FlNzM2OTZkMzM3YzI4YTAwNzg4MGNjZmZjZCIsInZlcnNpb24iOjF9.cmkuDmhhETKIKAL81K28oiO889sZ0hvEpZ6Ep7dW_KB9VOTFs15BzFY9vwcpdXQDugWBbB2g7r3FUgRLwIEpAg
- type: precision
value: 0.9265082039990273
name: Precision Weighted
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTA2NzY2NTJmZTExZWM3OGIzYzg3ZDM3Y2I5MTU3Mjg3Y2NmZGEyMjFmNjExZWM3ZDFjNzdhOTZkNTYwYWQxYyIsInZlcnNpb24iOjF9.DJgeA6ZovHoxgCqhzilIzafet8uN3-Xbx1ZYcEEc4jXzFbRtErE__QHGaaSaUQEzPp4BAztp1ageOaBoEmXSDg
- type: recall
value: 0.879224648382427
name: Recall Macro
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZGU3MmQ1Yjg5OGJlYTE1NWJmNGVjY2ExMDZiZjVjYmVkOGYxYWFkOTVlMDVjOWVhZGFjOGFkYzcwMGIyMTAyZCIsInZlcnNpb24iOjF9.jwgaNEBSQENlx3vojBi1WKJOQ7pSuP4Iyw4kKPsq9IUaW-Ah8KdgPV9Nm2DY1cwEtMayvVeIVmQ3Wo8PORDRAg
- type: recall
value: 0.9265
name: Recall Micro
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDE3OWQ0ZGZjNzAxY2I0NGMxNDU0OWE1OGM2N2Q3OTUwYWI0NmZjMDQ3MDc0NDA4YTc2NDViM2Y0ZTMyMjYyZCIsInZlcnNpb24iOjF9.Ihc61PSO3K63t5hUSAve4Gt1tC8R_ZruZo492dTD9CsKOF10LkvrCskJJaOATjFJgqb3FFiJ8-nDL9Pa3HF-Dg
- type: recall
value: 0.9265
name: Recall Weighted
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzJkYTg5YjA0YTBlNDY3ZjFjZWIzOWVhYjI4Y2YxM2FhMmUwMDZlZTE0NTIzNjMxMjE3NzgwNGFjYTkzOWM1YyIsInZlcnNpb24iOjF9.LlBX4xTjKuTX0NPK0jYzYDXRVnUEoUKVwIHfw5xUzaFgtF4wuqaYV7F0VKoOd3JZxzxNgf7JzeLof0qTquE9Cw
- type: f1
value: 0.8821398657055098
name: F1 Macro
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTE4OThiMmE0NDEzZjBkY2RmZWNjMGI3YWNmNTFjNTY5NjIwNjFkZjk1ZjIxMjI4M2ZiZGJhYzJmNzVhZTU1NSIsInZlcnNpb24iOjF9.gzYyUbO4ycvP1RXnrKKZH3E8ym0DjwwUFf4Vk9j0wrg2sWIchjmuloZz0SLryGqwHiAV8iKcSBWWy61Q480XAw
- type: f1
value: 0.9265
name: F1 Micro
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZGM2Y2E0NjMyNmJhMTE4NjYyMjI2MTJlZjUzNmRmY2U3Yjk3ZGUyYzU2OWYzMWM2ZjY4ZTg0OTliOTY3YmI2MSIsInZlcnNpb24iOjF9.hEz_yExs6LV0RBpFBoUbnAQZHitxN57HodCJpDx0yyW6dQwWaza0JxdO-kBf8JVBK8JyISkNgOYskBY5LD4ZDQ
- type: f1
value: 0.9262425173620311
name: F1 Weighted
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZmMyY2NhNTRhOGMwM2M5OTQxNDQ0NjRkZDdiMDExMWFkMmI4MmYwZGQ1OGRiYmRjMmE2YTc0MGZmMWMwN2Q4MSIsInZlcnNpb24iOjF9.ljbb2L4R08NCGjcfuX1878HRilJ_p9qcDJpWhsu-5EqWCco80e9krb7VvIJV0zBfmi7Z3C2qGGRsfsAIhtQ5Dw
- type: loss
value: 0.17315374314785004
name: loss
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZmQwN2I2Nzg4OWU1ODE5NTBhMTZiMjljMjJhN2JiYmY0MTkzMTA1NmVhMGU0Y2Y0NjgyOTU3ZjgyYTc3ODE5NCIsInZlcnNpb24iOjF9.EEp3Gxm58ab-9335UGQEk-3dFQcMRgJgViI7fpz7mfY2r5Pg-AOel5w4SMzmBM-hiUFwStgxe5he_kG2yPGFCw
---
# bert-base-uncased-emotion
## Model description:
[Bert](https://arxiv.org/abs/1810.04805) is a Transformer Bidirectional Encoder based Architecture trained on MLM(Mask Language Modeling) objective
[bert-base-uncased](https://huggingface.co/bert-base-uncased) finetuned on the emotion dataset using HuggingFace Trainer with below training parameters
```
learning rate 2e-5,
batch size 64,
num_train_epochs=8,
```
## Model Performance Comparision on Emotion Dataset from Twitter:
| Model | Accuracy | F1 Score | Test Sample per Second |
| --- | --- | --- | --- |
| [Distilbert-base-uncased-emotion](https://huggingface.co/bhadresh-savani/distilbert-base-uncased-emotion) | 93.8 | 93.79 | 398.69 |
| [Bert-base-uncased-emotion](https://huggingface.co/bhadresh-savani/bert-base-uncased-emotion) | 94.05 | 94.06 | 190.152 |
| [Roberta-base-emotion](https://huggingface.co/bhadresh-savani/roberta-base-emotion) | 93.95 | 93.97| 195.639 |
| [Albert-base-v2-emotion](https://huggingface.co/bhadresh-savani/albert-base-v2-emotion) | 93.6 | 93.65 | 182.794 |
## How to Use the model:
```python
from transformers import pipeline
classifier = pipeline("text-classification",model='bhadresh-savani/bert-base-uncased-emotion', return_all_scores=True)
prediction = classifier("I love using transformers. The best part is wide range of support and its easy to use", )
print(prediction)
"""
output:
[[
{'label': 'sadness', 'score': 0.0005138228880241513},
{'label': 'joy', 'score': 0.9972520470619202},
{'label': 'love', 'score': 0.0007443308713845909},
{'label': 'anger', 'score': 0.0007404946954920888},
{'label': 'fear', 'score': 0.00032938539516180754},
{'label': 'surprise', 'score': 0.0004197491507511586}
]]
"""
```
## Dataset:
[Twitter-Sentiment-Analysis](https://huggingface.co/nlp/viewer/?dataset=emotion).
## Training procedure
[Colab Notebook](https://github.com/bhadreshpsavani/ExploringSentimentalAnalysis/blob/main/SentimentalAnalysisWithDistilbert.ipynb)
follow the above notebook by changing the model name from distilbert to bert
## Eval results
```json
{
'test_accuracy': 0.9405,
'test_f1': 0.9405920712282673,
'test_loss': 0.15769127011299133,
'test_runtime': 10.5179,
'test_samples_per_second': 190.152,
'test_steps_per_second': 3.042
}
```
## Reference:
* [Natural Language Processing with Transformer By Lewis Tunstall, Leandro von Werra, Thomas Wolf](https://learning.oreilly.com/library/view/natural-language-processing/9781098103231/) |