--- language: - en license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - Jzuluaga/atcosim_corpus metrics: - wer model-index: - name: bhattasp/w_f1_v2v_tiny results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: atcosim type: Jzuluaga/atcosim_corpus args: 'config: en, split: test' metrics: - name: Wer type: wer value: 12.706474693048317 --- # bhattasp/w_f1_v2v_tiny This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the atcosim dataset. It achieves the following results on the evaluation set: - Loss: 0.2855 - Wer: 12.7065 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.0122 | 3.1949 | 1000 | 0.2859 | 11.9733 | | 0.0013 | 6.3898 | 2000 | 0.2855 | 12.7065 | ### Framework versions - Transformers 4.43.3 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1