Push model using huggingface_hub.
Browse files- 1_Pooling/config.json +10 -0
- README.md +438 -0
- added_tokens.json +3 -0
- config.json +35 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +11 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +15 -0
- spm.model +3 -0
- tokenizer.json +0 -0
- tokenizer_config.json +58 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,438 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: microsoft/deberta-v3-base
|
3 |
+
datasets:
|
4 |
+
- bhujith10/multi_class_classification_dataset
|
5 |
+
library_name: setfit
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
pipeline_tag: text-classification
|
9 |
+
tags:
|
10 |
+
- setfit
|
11 |
+
- sentence-transformers
|
12 |
+
- text-classification
|
13 |
+
- generated_from_setfit_trainer
|
14 |
+
widget:
|
15 |
+
- text: 'Title: Detecting Adversarial Samples Using Density Ratio Estimates,
|
16 |
+
|
17 |
+
Abstract: Machine learning models, especially based on deep architectures are
|
18 |
+
used in
|
19 |
+
|
20 |
+
everyday applications ranging from self driving cars to medical diagnostics. It
|
21 |
+
|
22 |
+
has been shown that such models are dangerously susceptible to adversarial
|
23 |
+
|
24 |
+
samples, indistinguishable from real samples to human eye, adversarial samples
|
25 |
+
|
26 |
+
lead to incorrect classifications with high confidence. Impact of adversarial
|
27 |
+
|
28 |
+
samples is far-reaching and their efficient detection remains an open problem.
|
29 |
+
|
30 |
+
We propose to use direct density ratio estimation as an efficient model
|
31 |
+
|
32 |
+
agnostic measure to detect adversarial samples. Our proposed method works
|
33 |
+
|
34 |
+
equally well with single and multi-channel samples, and with different
|
35 |
+
|
36 |
+
adversarial sample generation methods. We also propose a method to use density
|
37 |
+
|
38 |
+
ratio estimates for generating adversarial samples with an added constraint of
|
39 |
+
|
40 |
+
preserving density ratio.'
|
41 |
+
- text: 'Title: Dynamics of exciton magnetic polarons in CdMnSe/CdMgSe quantum wells:
|
42 |
+
the effect of self-localization,
|
43 |
+
|
44 |
+
Abstract: We study the exciton magnetic polaron (EMP) formation in (Cd,Mn)Se/(Cd,Mg)Se
|
45 |
+
|
46 |
+
diluted-magnetic-semiconductor quantum wells using time-resolved
|
47 |
+
|
48 |
+
photoluminescence (PL). The magnetic field and temperature dependencies of this
|
49 |
+
|
50 |
+
dynamics allow us to separate the non-magnetic and magnetic contributions to
|
51 |
+
|
52 |
+
the exciton localization. We deduce the EMP energy of 14 meV, which is in
|
53 |
+
|
54 |
+
agreement with time-integrated measurements based on selective excitation and
|
55 |
+
|
56 |
+
the magnetic field dependence of the PL circular polarization degree. The
|
57 |
+
|
58 |
+
polaron formation time of 500 ps is significantly longer than the corresponding
|
59 |
+
|
60 |
+
values reported earlier. We propose that this behavior is related to strong
|
61 |
+
|
62 |
+
self-localization of the EMP, accompanied with a squeezing of the heavy-hole
|
63 |
+
|
64 |
+
envelope wavefunction. This conclusion is also supported by the decrease of the
|
65 |
+
|
66 |
+
exciton lifetime from 600 ps to 200 - 400 ps with increasing magnetic field and
|
67 |
+
|
68 |
+
temperature.'
|
69 |
+
- text: 'Title: Exponential Sums and Riesz energies,
|
70 |
+
|
71 |
+
Abstract: We bound an exponential sum that appears in the study of irregularities
|
72 |
+
of
|
73 |
+
|
74 |
+
distribution (the low-frequency Fourier energy of the sum of several Dirac
|
75 |
+
|
76 |
+
measures) by geometric quantities: a special case is that for all $\left\{ x_1,
|
77 |
+
|
78 |
+
\dots, x_N\right\} \subset \mathbb{T}^2$, $X \geq 1$ and a universal $c>0$ $$
|
79 |
+
|
80 |
+
\sum_{i,j=1}^{N}{ \frac{X^2}{1 + X^4 \|x_i -x_j\|^4}} \lesssim \sum_{k \in
|
81 |
+
|
82 |
+
\mathbb{Z}^2 \atop \|k\| \leq X}{ \left| \sum_{n=1}^{N}{ e^{2 \pi i
|
83 |
+
|
84 |
+
\left\langle k, x_n \right\rangle}}\right|^2} \lesssim \sum_{i,j=1}^{N}{ X^2
|
85 |
+
|
86 |
+
e^{-c X^2\|x_i -x_j\|^2}}.$$ Since this exponential sum is intimately tied to
|
87 |
+
|
88 |
+
rather subtle distribution properties of the points, we obtain nonlocal
|
89 |
+
|
90 |
+
structural statements for near-minimizers of the Riesz-type energy. In the
|
91 |
+
|
92 |
+
regime $X \gtrsim N^{1/2}$ both upper and lower bound match for
|
93 |
+
|
94 |
+
maximally-separated point sets satisfying $\|x_i -x_j\| \gtrsim N^{-1/2}$.'
|
95 |
+
- text: 'Title: Influence of Spin Orbit Coupling in the Iron-Based Superconductors,
|
96 |
+
|
97 |
+
Abstract: We report on the influence of spin-orbit coupling (SOC) in the Fe-based
|
98 |
+
|
99 |
+
superconductors (FeSCs) via application of circularly-polarized spin and
|
100 |
+
|
101 |
+
angle-resolved photoemission spectroscopy. We combine this technique in
|
102 |
+
|
103 |
+
representative members of both the Fe-pnictides and Fe-chalcogenides with ab
|
104 |
+
|
105 |
+
initio density functional theory and tight-binding calculations to establish an
|
106 |
+
|
107 |
+
ubiquitous modification of the electronic structure in these materials imbued
|
108 |
+
|
109 |
+
by SOC. The influence of SOC is found to be concentrated on the hole pockets
|
110 |
+
|
111 |
+
where the superconducting gap is generally found to be largest. This result
|
112 |
+
|
113 |
+
contests descriptions of superconductivity in these materials in terms of pure
|
114 |
+
|
115 |
+
spin-singlet eigenstates, raising questions regarding the possible pairing
|
116 |
+
|
117 |
+
mechanisms and role of SOC therein.'
|
118 |
+
- text: 'Title: Zero-point spin-fluctuations of single adatoms,
|
119 |
+
|
120 |
+
Abstract: Stabilizing the magnetic signal of single adatoms is a crucial step
|
121 |
+
towards
|
122 |
+
|
123 |
+
their successful usage in widespread technological applications such as
|
124 |
+
|
125 |
+
high-density magnetic data storage devices. The quantum mechanical nature of
|
126 |
+
|
127 |
+
these tiny objects, however, introduces intrinsic zero-point spin-fluctuations
|
128 |
+
|
129 |
+
that tend to destabilize the local magnetic moment of interest by dwindling the
|
130 |
+
|
131 |
+
magnetic anisotropy potential barrier even at absolute zero temperature. Here,
|
132 |
+
|
133 |
+
we elucidate the origins and quantify the effect of the fundamental ingredients
|
134 |
+
|
135 |
+
determining the magnitude of the fluctuations, namely the ($i$) local magnetic
|
136 |
+
|
137 |
+
moment, ($ii$) spin-orbit coupling and ($iii$) electron-hole Stoner
|
138 |
+
|
139 |
+
excitations. Based on a systematic first-principles study of 3d and 4d adatoms,
|
140 |
+
|
141 |
+
we demonstrate that the transverse contribution of the fluctuations is
|
142 |
+
|
143 |
+
comparable in size to the magnetic moment itself, leading to a remarkable
|
144 |
+
|
145 |
+
$\gtrsim$50$\%$ reduction of the magnetic anisotropy energy. Our analysis gives
|
146 |
+
|
147 |
+
rise to a comprehensible diagram relating the fluctuation magnitude to
|
148 |
+
|
149 |
+
characteristic features of adatoms, providing practical guidelines for
|
150 |
+
|
151 |
+
designing magnetically stable nanomagnets with minimal quantum fluctuations.'
|
152 |
+
inference: false
|
153 |
+
---
|
154 |
+
|
155 |
+
# SetFit with microsoft/deberta-v3-base
|
156 |
+
|
157 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [bhujith10/multi_class_classification_dataset](https://huggingface.co/datasets/bhujith10/multi_class_classification_dataset) dataset that can be used for Text Classification. This SetFit model uses [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) as the Sentence Transformer embedding model. A [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance is used for classification.
|
158 |
+
|
159 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
160 |
+
|
161 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
162 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
163 |
+
|
164 |
+
## Model Details
|
165 |
+
|
166 |
+
### Model Description
|
167 |
+
- **Model Type:** SetFit
|
168 |
+
- **Sentence Transformer body:** [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base)
|
169 |
+
- **Classification head:** a [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance
|
170 |
+
- **Maximum Sequence Length:** 512 tokens
|
171 |
+
- **Number of Classes:** 6 classes
|
172 |
+
- **Training Dataset:** [bhujith10/multi_class_classification_dataset](https://huggingface.co/datasets/bhujith10/multi_class_classification_dataset)
|
173 |
+
<!-- - **Language:** Unknown -->
|
174 |
+
<!-- - **License:** Unknown -->
|
175 |
+
|
176 |
+
### Model Sources
|
177 |
+
|
178 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
179 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
180 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
181 |
+
|
182 |
+
## Uses
|
183 |
+
|
184 |
+
### Direct Use for Inference
|
185 |
+
|
186 |
+
First install the SetFit library:
|
187 |
+
|
188 |
+
```bash
|
189 |
+
pip install setfit
|
190 |
+
```
|
191 |
+
|
192 |
+
Then you can load this model and run inference.
|
193 |
+
|
194 |
+
```python
|
195 |
+
from setfit import SetFitModel
|
196 |
+
|
197 |
+
# Download from the 🤗 Hub
|
198 |
+
model = SetFitModel.from_pretrained("bhujith10/deberta-v3-base-setfit_finetuned")
|
199 |
+
# Run inference
|
200 |
+
preds = model("Title: Influence of Spin Orbit Coupling in the Iron-Based Superconductors,
|
201 |
+
Abstract: We report on the influence of spin-orbit coupling (SOC) in the Fe-based
|
202 |
+
superconductors (FeSCs) via application of circularly-polarized spin and
|
203 |
+
angle-resolved photoemission spectroscopy. We combine this technique in
|
204 |
+
representative members of both the Fe-pnictides and Fe-chalcogenides with ab
|
205 |
+
initio density functional theory and tight-binding calculations to establish an
|
206 |
+
ubiquitous modification of the electronic structure in these materials imbued
|
207 |
+
by SOC. The influence of SOC is found to be concentrated on the hole pockets
|
208 |
+
where the superconducting gap is generally found to be largest. This result
|
209 |
+
contests descriptions of superconductivity in these materials in terms of pure
|
210 |
+
spin-singlet eigenstates, raising questions regarding the possible pairing
|
211 |
+
mechanisms and role of SOC therein.")
|
212 |
+
```
|
213 |
+
|
214 |
+
<!--
|
215 |
+
### Downstream Use
|
216 |
+
|
217 |
+
*List how someone could finetune this model on their own dataset.*
|
218 |
+
-->
|
219 |
+
|
220 |
+
<!--
|
221 |
+
### Out-of-Scope Use
|
222 |
+
|
223 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
224 |
+
-->
|
225 |
+
|
226 |
+
<!--
|
227 |
+
## Bias, Risks and Limitations
|
228 |
+
|
229 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
230 |
+
-->
|
231 |
+
|
232 |
+
<!--
|
233 |
+
### Recommendations
|
234 |
+
|
235 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
236 |
+
-->
|
237 |
+
|
238 |
+
## Training Details
|
239 |
+
|
240 |
+
### Training Set Metrics
|
241 |
+
| Training set | Min | Median | Max |
|
242 |
+
|:-------------|:----|:-------|:----|
|
243 |
+
| Word count | 23 | 148.1 | 303 |
|
244 |
+
|
245 |
+
### Training Hyperparameters
|
246 |
+
- batch_size: (4, 4)
|
247 |
+
- num_epochs: (1, 1)
|
248 |
+
- max_steps: -1
|
249 |
+
- sampling_strategy: oversampling
|
250 |
+
- body_learning_rate: (2e-05, 1e-05)
|
251 |
+
- head_learning_rate: 0.01
|
252 |
+
- loss: CosineSimilarityLoss
|
253 |
+
- distance_metric: cosine_distance
|
254 |
+
- margin: 0.25
|
255 |
+
- end_to_end: False
|
256 |
+
- use_amp: False
|
257 |
+
- warmup_proportion: 0.1
|
258 |
+
- l2_weight: 0.01
|
259 |
+
- seed: 42
|
260 |
+
- eval_max_steps: -1
|
261 |
+
- load_best_model_at_end: True
|
262 |
+
|
263 |
+
### Training Results
|
264 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
265 |
+
|:------:|:----:|:-------------:|:---------------:|
|
266 |
+
| 0.0002 | 1 | 0.4731 | - |
|
267 |
+
| 0.0078 | 50 | 0.4561 | - |
|
268 |
+
| 0.0155 | 100 | 0.4156 | - |
|
269 |
+
| 0.0233 | 150 | 0.2469 | - |
|
270 |
+
| 0.0311 | 200 | 0.2396 | - |
|
271 |
+
| 0.0388 | 250 | 0.2376 | - |
|
272 |
+
| 0.0466 | 300 | 0.2519 | - |
|
273 |
+
| 0.0543 | 350 | 0.1987 | - |
|
274 |
+
| 0.0621 | 400 | 0.1908 | - |
|
275 |
+
| 0.0699 | 450 | 0.161 | - |
|
276 |
+
| 0.0776 | 500 | 0.1532 | - |
|
277 |
+
| 0.0854 | 550 | 0.17 | - |
|
278 |
+
| 0.0932 | 600 | 0.139 | - |
|
279 |
+
| 0.1009 | 650 | 0.1406 | - |
|
280 |
+
| 0.1087 | 700 | 0.1239 | - |
|
281 |
+
| 0.1165 | 750 | 0.1332 | - |
|
282 |
+
| 0.1242 | 800 | 0.1566 | - |
|
283 |
+
| 0.1320 | 850 | 0.0932 | - |
|
284 |
+
| 0.1398 | 900 | 0.1101 | - |
|
285 |
+
| 0.1475 | 950 | 0.1153 | - |
|
286 |
+
| 0.1553 | 1000 | 0.0979 | - |
|
287 |
+
| 0.1630 | 1050 | 0.0741 | - |
|
288 |
+
| 0.1708 | 1100 | 0.0603 | - |
|
289 |
+
| 0.1786 | 1150 | 0.1027 | - |
|
290 |
+
| 0.1863 | 1200 | 0.0948 | - |
|
291 |
+
| 0.1941 | 1250 | 0.0968 | - |
|
292 |
+
| 0.2019 | 1300 | 0.085 | - |
|
293 |
+
| 0.2096 | 1350 | 0.0883 | - |
|
294 |
+
| 0.2174 | 1400 | 0.0792 | - |
|
295 |
+
| 0.2252 | 1450 | 0.1054 | - |
|
296 |
+
| 0.2329 | 1500 | 0.0556 | - |
|
297 |
+
| 0.2407 | 1550 | 0.0777 | - |
|
298 |
+
| 0.2484 | 1600 | 0.0922 | - |
|
299 |
+
| 0.2562 | 1650 | 0.076 | - |
|
300 |
+
| 0.2640 | 1700 | 0.0693 | - |
|
301 |
+
| 0.2717 | 1750 | 0.0857 | - |
|
302 |
+
| 0.2795 | 1800 | 0.0907 | - |
|
303 |
+
| 0.2873 | 1850 | 0.0621 | - |
|
304 |
+
| 0.2950 | 1900 | 0.0792 | - |
|
305 |
+
| 0.3028 | 1950 | 0.0608 | - |
|
306 |
+
| 0.3106 | 2000 | 0.052 | - |
|
307 |
+
| 0.3183 | 2050 | 0.056 | - |
|
308 |
+
| 0.3261 | 2100 | 0.0501 | - |
|
309 |
+
| 0.3339 | 2150 | 0.0559 | - |
|
310 |
+
| 0.3416 | 2200 | 0.0526 | - |
|
311 |
+
| 0.3494 | 2250 | 0.0546 | - |
|
312 |
+
| 0.3571 | 2300 | 0.0398 | - |
|
313 |
+
| 0.3649 | 2350 | 0.0527 | - |
|
314 |
+
| 0.3727 | 2400 | 0.0522 | - |
|
315 |
+
| 0.3804 | 2450 | 0.0468 | - |
|
316 |
+
| 0.3882 | 2500 | 0.0465 | - |
|
317 |
+
| 0.3960 | 2550 | 0.0393 | - |
|
318 |
+
| 0.4037 | 2600 | 0.0583 | - |
|
319 |
+
| 0.4115 | 2650 | 0.0278 | - |
|
320 |
+
| 0.4193 | 2700 | 0.0502 | - |
|
321 |
+
| 0.4270 | 2750 | 0.0413 | - |
|
322 |
+
| 0.4348 | 2800 | 0.0538 | - |
|
323 |
+
| 0.4425 | 2850 | 0.0361 | - |
|
324 |
+
| 0.4503 | 2900 | 0.0648 | - |
|
325 |
+
| 0.4581 | 2950 | 0.0459 | - |
|
326 |
+
| 0.4658 | 3000 | 0.0521 | - |
|
327 |
+
| 0.4736 | 3050 | 0.0288 | - |
|
328 |
+
| 0.4814 | 3100 | 0.0323 | - |
|
329 |
+
| 0.4891 | 3150 | 0.0335 | - |
|
330 |
+
| 0.4969 | 3200 | 0.0472 | - |
|
331 |
+
| 0.5047 | 3250 | 0.0553 | - |
|
332 |
+
| 0.5124 | 3300 | 0.0426 | - |
|
333 |
+
| 0.5202 | 3350 | 0.0276 | - |
|
334 |
+
| 0.5280 | 3400 | 0.0395 | - |
|
335 |
+
| 0.5357 | 3450 | 0.042 | - |
|
336 |
+
| 0.5435 | 3500 | 0.0343 | - |
|
337 |
+
| 0.5512 | 3550 | 0.0314 | - |
|
338 |
+
| 0.5590 | 3600 | 0.0266 | - |
|
339 |
+
| 0.5668 | 3650 | 0.0314 | - |
|
340 |
+
| 0.5745 | 3700 | 0.0379 | - |
|
341 |
+
| 0.5823 | 3750 | 0.0485 | - |
|
342 |
+
| 0.5901 | 3800 | 0.0311 | - |
|
343 |
+
| 0.5978 | 3850 | 0.0415 | - |
|
344 |
+
| 0.6056 | 3900 | 0.0266 | - |
|
345 |
+
| 0.6134 | 3950 | 0.0384 | - |
|
346 |
+
| 0.6211 | 4000 | 0.0348 | - |
|
347 |
+
| 0.6289 | 4050 | 0.0298 | - |
|
348 |
+
| 0.6366 | 4100 | 0.032 | - |
|
349 |
+
| 0.6444 | 4150 | 0.031 | - |
|
350 |
+
| 0.6522 | 4200 | 0.0367 | - |
|
351 |
+
| 0.6599 | 4250 | 0.0289 | - |
|
352 |
+
| 0.6677 | 4300 | 0.0333 | - |
|
353 |
+
| 0.6755 | 4350 | 0.0281 | - |
|
354 |
+
| 0.6832 | 4400 | 0.0307 | - |
|
355 |
+
| 0.6910 | 4450 | 0.0312 | - |
|
356 |
+
| 0.6988 | 4500 | 0.0488 | - |
|
357 |
+
| 0.7065 | 4550 | 0.03 | - |
|
358 |
+
| 0.7143 | 4600 | 0.0309 | - |
|
359 |
+
| 0.7220 | 4650 | 0.031 | - |
|
360 |
+
| 0.7298 | 4700 | 0.0268 | - |
|
361 |
+
| 0.7376 | 4750 | 0.0324 | - |
|
362 |
+
| 0.7453 | 4800 | 0.041 | - |
|
363 |
+
| 0.7531 | 4850 | 0.0349 | - |
|
364 |
+
| 0.7609 | 4900 | 0.0349 | - |
|
365 |
+
| 0.7686 | 4950 | 0.0291 | - |
|
366 |
+
| 0.7764 | 5000 | 0.025 | - |
|
367 |
+
| 0.7842 | 5050 | 0.0249 | - |
|
368 |
+
| 0.7919 | 5100 | 0.0272 | - |
|
369 |
+
| 0.7997 | 5150 | 0.0302 | - |
|
370 |
+
| 0.8075 | 5200 | 0.0414 | - |
|
371 |
+
| 0.8152 | 5250 | 0.0295 | - |
|
372 |
+
| 0.8230 | 5300 | 0.033 | - |
|
373 |
+
| 0.8307 | 5350 | 0.0203 | - |
|
374 |
+
| 0.8385 | 5400 | 0.0275 | - |
|
375 |
+
| 0.8463 | 5450 | 0.0354 | - |
|
376 |
+
| 0.8540 | 5500 | 0.0254 | - |
|
377 |
+
| 0.8618 | 5550 | 0.0313 | - |
|
378 |
+
| 0.8696 | 5600 | 0.0296 | - |
|
379 |
+
| 0.8773 | 5650 | 0.0248 | - |
|
380 |
+
| 0.8851 | 5700 | 0.036 | - |
|
381 |
+
| 0.8929 | 5750 | 0.025 | - |
|
382 |
+
| 0.9006 | 5800 | 0.0234 | - |
|
383 |
+
| 0.9084 | 5850 | 0.0221 | - |
|
384 |
+
| 0.9161 | 5900 | 0.0314 | - |
|
385 |
+
| 0.9239 | 5950 | 0.0273 | - |
|
386 |
+
| 0.9317 | 6000 | 0.0299 | - |
|
387 |
+
| 0.9394 | 6050 | 0.0262 | - |
|
388 |
+
| 0.9472 | 6100 | 0.0285 | - |
|
389 |
+
| 0.9550 | 6150 | 0.021 | - |
|
390 |
+
| 0.9627 | 6200 | 0.0215 | - |
|
391 |
+
| 0.9705 | 6250 | 0.0312 | - |
|
392 |
+
| 0.9783 | 6300 | 0.0259 | - |
|
393 |
+
| 0.9860 | 6350 | 0.0234 | - |
|
394 |
+
| 0.9938 | 6400 | 0.0222 | - |
|
395 |
+
| 1.0 | 6440 | - | 0.1609 |
|
396 |
+
|
397 |
+
### Framework Versions
|
398 |
+
- Python: 3.10.14
|
399 |
+
- SetFit: 1.1.0
|
400 |
+
- Sentence Transformers: 3.3.1
|
401 |
+
- Transformers: 4.45.2
|
402 |
+
- PyTorch: 2.4.0
|
403 |
+
- Datasets: 3.0.1
|
404 |
+
- Tokenizers: 0.20.0
|
405 |
+
|
406 |
+
## Citation
|
407 |
+
|
408 |
+
### BibTeX
|
409 |
+
```bibtex
|
410 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
411 |
+
doi = {10.48550/ARXIV.2209.11055},
|
412 |
+
url = {https://arxiv.org/abs/2209.11055},
|
413 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
414 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
415 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
416 |
+
publisher = {arXiv},
|
417 |
+
year = {2022},
|
418 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
419 |
+
}
|
420 |
+
```
|
421 |
+
|
422 |
+
<!--
|
423 |
+
## Glossary
|
424 |
+
|
425 |
+
*Clearly define terms in order to be accessible across audiences.*
|
426 |
+
-->
|
427 |
+
|
428 |
+
<!--
|
429 |
+
## Model Card Authors
|
430 |
+
|
431 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
432 |
+
-->
|
433 |
+
|
434 |
+
<!--
|
435 |
+
## Model Card Contact
|
436 |
+
|
437 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
438 |
+
-->
|
added_tokens.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"[MASK]": 128000
|
3 |
+
}
|
config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "microsoft/deberta-v3-base",
|
3 |
+
"architectures": [
|
4 |
+
"DebertaV2Model"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"hidden_act": "gelu",
|
8 |
+
"hidden_dropout_prob": 0.1,
|
9 |
+
"hidden_size": 768,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 3072,
|
12 |
+
"layer_norm_eps": 1e-07,
|
13 |
+
"max_position_embeddings": 512,
|
14 |
+
"max_relative_positions": -1,
|
15 |
+
"model_type": "deberta-v2",
|
16 |
+
"norm_rel_ebd": "layer_norm",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"pooler_dropout": 0,
|
21 |
+
"pooler_hidden_act": "gelu",
|
22 |
+
"pooler_hidden_size": 768,
|
23 |
+
"pos_att_type": [
|
24 |
+
"p2c",
|
25 |
+
"c2p"
|
26 |
+
],
|
27 |
+
"position_biased_input": false,
|
28 |
+
"position_buckets": 256,
|
29 |
+
"relative_attention": true,
|
30 |
+
"share_att_key": true,
|
31 |
+
"torch_dtype": "float32",
|
32 |
+
"transformers_version": "4.45.2",
|
33 |
+
"type_vocab_size": 0,
|
34 |
+
"vocab_size": 128100
|
35 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.45.2",
|
5 |
+
"pytorch": "2.4.0"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"normalize_embeddings": false,
|
3 |
+
"labels": [
|
4 |
+
"Computer Science",
|
5 |
+
"Physics",
|
6 |
+
"Mathematics",
|
7 |
+
"Statistics",
|
8 |
+
"Quantitative Biology",
|
9 |
+
"Quantitative Finance"
|
10 |
+
]
|
11 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:84fb4ee9b24426df122bb28fbf599b031f8281c756452a3cd7ee40d77a1d353e
|
3 |
+
size 735348840
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fa6fd35b630030ecad96212eec905b8de3b24a220adeb2770f440c771cc5d8e8
|
3 |
+
size 20006
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "[CLS]",
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"eos_token": "[SEP]",
|
5 |
+
"mask_token": "[MASK]",
|
6 |
+
"pad_token": "[PAD]",
|
7 |
+
"sep_token": "[SEP]",
|
8 |
+
"unk_token": {
|
9 |
+
"content": "[UNK]",
|
10 |
+
"lstrip": false,
|
11 |
+
"normalized": true,
|
12 |
+
"rstrip": false,
|
13 |
+
"single_word": false
|
14 |
+
}
|
15 |
+
}
|
spm.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c679fbf93643d19aab7ee10c0b99e460bdbc02fedf34b92b05af343b4af586fd
|
3 |
+
size 2464616
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[CLS]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[SEP]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"128000": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "[CLS]",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "[CLS]",
|
47 |
+
"do_lower_case": false,
|
48 |
+
"eos_token": "[SEP]",
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"model_max_length": 1000000000000000019884624838656,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"sep_token": "[SEP]",
|
53 |
+
"sp_model_kwargs": {},
|
54 |
+
"split_by_punct": false,
|
55 |
+
"tokenizer_class": "DebertaV2Tokenizer",
|
56 |
+
"unk_token": "[UNK]",
|
57 |
+
"vocab_type": "spm"
|
58 |
+
}
|