Text Generation
Transformers
PyTorch
TensorBoard
Safetensors
bloom
Eval Results
text-generation-inference
Inference Endpoints
File size: 74,361 Bytes
a655f9e
e9247ea
472cdd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d74ffd8
 
 
 
 
 
 
 
 
 
 
 
 
 
0bc3d2e
a6cebd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7ef188
 
a6cebd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d3b298
 
 
 
 
bb3556d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a655f9e
 
83839ee
536a915
eb49b9c
a73c620
536a915
6cb7cc9
 
 
536a915
168ece4
6cb7cc9
 
 
 
472cdd0
536a915
6cb7cc9
 
472cdd0
536a915
6cb7cc9
472cdd0
536a915
 
 
 
472cdd0
536a915
ba402e7
536a915
472cdd0
536a915
472cdd0
536a915
8ffc30e
472cdd0
 
536a915
472cdd0
 
 
 
 
536a915
 
 
0aa20cd
6cb7cc9
 
 
472cdd0
536a915
6cb7cc9
536a915
472cdd0
536a915
6cb7cc9
 
 
536a915
472cdd0
536a915
472cdd0
536a915
472cdd0
536a915
472cdd0
536a915
472cdd0
536a915
472cdd0
536a915
472cdd0
536a915
472cdd0
 
6cb7cc9
 
 
 
536a915
6cb7cc9
472cdd0
6cb7cc9
472cdd0
6cb7cc9
536a915
6cb7cc9
536a915
6cb7cc9
536a915
6cb7cc9
536a915
6cb7cc9
536a915
6cb7cc9
536a915
6cb7cc9
536a915
6cb7cc9
536a915
6cb7cc9
536a915
6cb7cc9
536a915
6cb7cc9
536a915
6cb7cc9
 
 
536a915
6cb7cc9
536a915
6cb7cc9
 
 
536a915
6cb7cc9
 
51eb23c
6cb7cc9
 
536a915
0140768
536a915
6cb7cc9
536a915
34aa644
472cdd0
34aa644
536a915
34aa644
536a915
6cb7cc9
 
 
 
bfd53df
536a915
 
6cb7cc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
472cdd0
6cb7cc9
 
 
472cdd0
 
536a915
472cdd0
536a915
472cdd0
 
6cb7cc9
 
 
 
 
 
 
472cdd0
6cb7cc9
536a915
6cb7cc9
536a915
6cb7cc9
 
 
 
 
 
 
 
 
 
 
 
 
536a915
6cb7cc9
 
536a915
472cdd0
536a915
6cb7cc9
472cdd0
6cb7cc9
536a915
472cdd0
536a915
6cb7cc9
536a915
6cb7cc9
536a915
6cb7cc9
 
536a915
 
6cb7cc9
536a915
46e5752
 
 
 
 
 
6cb7cc9
536a915
 
 
6cb7cc9
536a915
 
 
472cdd0
536a915
472cdd0
536a915
6cb7cc9
536a915
472cdd0
536a915
 
 
 
472cdd0
536a915
6cb7cc9
536a915
dc534f6
536a915
215bee9
536a915
472cdd0
536a915
472cdd0
536a915
472cdd0
536a915
6cb7cc9
536a915
472cdd0
536a915
 
 
 
 
 
 
 
 
472cdd0
536a915
 
 
 
 
472cdd0
536a915
6cb7cc9
536a915
6cb7cc9
536a915
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cb7cc9
536a915
472cdd0
536a915
472cdd0
536a915
6cb7cc9
536a915
 
 
 
 
 
 
 
 
6cb7cc9
536a915
6cb7cc9
536a915
 
6cb7cc9
 
 
536a915
 
 
 
 
 
472cdd0
536a915
 
 
 
 
 
 
472cdd0
536a915
472cdd0
536a915
472cdd0
6cb7cc9
dc534f6
 
536a915
 
6cb7cc9
 
 
472cdd0
 
6cb7cc9
536a915
6cb7cc9
536a915
6cb7cc9
472cdd0
6cb7cc9
 
536a915
 
 
 
472cdd0
114e931
536a915
472cdd0
536a915
6cb7cc9
bb3556d
536a915
 
472cdd0
536a915
bb3556d
536a915
 
6cb7cc9
536a915
 
bb3556d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e1e135
 
 
bb3556d
 
472cdd0
536a915
bb3556d
536a915
bb3556d
536a915
bb3556d
536a915
bb3556d
536a915
bb3556d
536a915
472cdd0
536a915
6cb7cc9
536a915
6cb7cc9
536a915
6cb7cc9
536a915
 
6cb7cc9
536a915
 
 
 
 
bf2a471
536a915
 
 
 
 
6cb7cc9
536a915
6cb7cc9
536a915
6cb7cc9
536a915
6cb7cc9
536a915
472cdd0
536a915
472cdd0
536a915
472cdd0
536a915
472cdd0
536a915
472cdd0
536a915
472cdd0
536a915
472cdd0
536a915
472cdd0
536a915
 
 
6cb7cc9
 
 
 
472cdd0
 
6cb7cc9
44651d2
 
 
 
 
472cdd0
6cb7cc9
472cdd0
 
 
6cb7cc9
472cdd0
 
 
 
 
 
 
 
 
 
 
6cb7cc9
 
472cdd0
 
 
 
6cb7cc9
472cdd0
 
 
 
6cb7cc9
 
472cdd0
6cb7cc9
536a915
 
bb3556d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
---
license: bigscience-bloom-rail-1.0
language:
- ak
- ar
- as
- bm
- bn
- ca
- en
- es
- eu
- fon
- fr
- gu
- hi
- id
- ig
- ki
- kn
- lg
- ln
- ml
- mr
- ne
- nso
- ny
- or
- pa
- pt
- rn
- rw
- sn
- st
- sw
- ta
- te
- tn
- ts
- tum
- tw
- ur
- vi
- wo
- xh
- yo
- zh
- zu
programming_language: 
- C
- C++
- C#
- Go
- Java
- JavaScript
- Lua
- PHP
- Python
- Ruby
- Rust
- Scala
- TypeScript
pipeline_tag: text-generation
widget:
- text: 'A "whatpu" is a small, furry animal native to Tanzania. An example of a sentence that uses the word whatpu is: We were traveling in Africa and we saw these very cute whatpus. | To do a "farduddle" means to jump up and down really fast. An example of a sentence that uses the word farduddle is:'
  example_title: Imaginary word
  group: English
- text: 'Un "whatpu" est un petit animal à fourrure originaire de Tanzanie. Un exemple de phrase qui utilise le mot whatpu est: Nous étions en Afrique et nous avons vu des whatpus trop mignons. Faire un "farduddle" veut dire sauter sur place vraiment vite. Un exemple de phrase qui utilise le mot farduddle est:'
  example_title: Imaginary word
  group: French
- text: 'Un "whatpu" es un pequeño animal peludo nativo de Tanzania. Un ejemplo de una oración que usa la palabra whatpu es: Estábamos viajando por África y vimos estos whatpus muy bonitos. Hacer un "farduddle" significa saltar arriba y abajo muy rápido. Un ejemplo de una oración que usa la palabra farduddle es:'
  example_title: Imaginary word
  group: Spanish
- text: ' ال"واتبو" هو حيوان صغير مكسو بالفراء يعيش في تنزانيا. مثال على جملة تستخدم كلمة واتبو هي: كنا نسافر في افريقيا و رأينا هؤلاء الواتبو اللطفاء. للقيام ب"فاردادل" يعني ان تقفز للأعلى و الأسفل بسرعة كبيرة. مثال على جملة تستخدم كلمة فاردادل هي:'
  example_title: Imaginary word
  group: Arabic
- text: 'Um "whatpu" é um pequeno animal peludo nativo da Tanzânia. Um exemplo de uma frase que usa a palavra whatpu é: Estávamos a viajar por África e vimos uns whatpus muito queridos. Fazer um "farduddle" significa saltar para cima e para baixo muito rápido. Um exemplo de uma frase que usa a palavra farduddle é:'
  example : Imaginary word
  group: Portuguese
- text: Pour déguster un ortolan, il faut tout d'abord
  example_title: Recipe
  group: French
- text: |
    34+10=44 
    54+20=
  example_title: Addition
  group: Math
- text: |
    This tool converts irregular verbs to past tense.
    Arise - Arose
    Become - Became
    Forget - Forgot
    Freeze -
  example_title: Irregular verbs
  group: English
- text: |
    Please unscramble the letters into a word, and write that word:
    r e!c.i p r o.c a/l = reciprocal
    d.o m i!n a n.t =
  example_title: Word unscrambling
  group: English
- text: |
    Estos ejemplos quitan vocales de las palabras
    Ejemplos:
    hola - hl
    manzana - mnzn
    papas - pps
    alacran - lcrn
    papa -
  example_title: Vowel removal
  group: Spanish
- text: |
    Traduce español de España a español de Argentina
    El coche es rojo - el auto es rojo
    El ordenador es nuevo - la computadora es nueva
    el boligrafo es negro - lapicera es negra
    la nevera
  example_title: Spanish to Argentinian Spanish
  group: Spanish
- text: To say "I love you" in Hindi, you would say
  example_title: Translation to Hindi
  group: English
- text: To say "I love you" in Hindi, you would say
  example_title: Translation from English
  group: Hindi
- text: 'Poor English: She no went to the market. Corrected English:'
  example_title: Grammar exercise 1 
  group: English
- text: 'استخراج العدد العاملي في لغة بايثون:'
  example_title: Code generation
  group: Arabic
- text: 'Regexp. Here is a regular expression to match a word starting with a number and then having only vowels:'
  example_title: Regular expressions
  group: English
- text: |
    Do a hello world in different languages:
    Python: print("hello world")
    R:
  example_title: Code generation
  group: English
- text: |
    Which is the correct preposition?I'm born X July. X is the preposition in
    He sat X a chair. X is the preposition on
    She drove X the bridge. X is the preposition
  example_title: Grammar exercise 2
  group: English
- text: |
    Dans cet essai je vais m'interroger sur la conscience des modèles d'intelligence artificielle récents comme les modèles de langue. Pour commencer, je m'intéresserai à la notion de conscience et à ce qui la caractérise. Ensuite, j'aborderai la question de l'intelligence et de son lien avec le langage. Enfin, dans une dernière partie je me pencherai sur le cas de l'IA et sur sa conscience.
    Traduction en espagnol: « 
  example_title: Translation to Spanish
  group: French
- text: |
    Dans cet essai je vais m'interroger sur la conscience des modèles d'intelligence artificielle récents comme les modèles de langue. Pour commencer, je m'intéresserai à la notion de conscience et à ce qui la caractérise. Ensuite, j'aborderai la question de l'intelligence et de son lien avec le langage. Enfin, dans une dernière partie je me pencherai sur le cas de l'IA et sur sa conscience.
    Traduction en espagnol: « 
  example_title: Translation from French
  group: Spanish
- text: ذات مرة ، عاش شبل الدب في الغابة
  example_title: Fairy tale
  group: Arabic
- text: एक बार की बात है, जंगल में एक भालू का शावक रहता था
  example_title: Fairy tale
  group: Hindi
- text: Il était une fois une licorne qui vivait
  example_title: Fairy tale
  group: French
- text: |
  Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the gold balls are blue. How many blue golf balls are there?
  A: Let's think step by step. 
  example_title: Mathematical reasoning
  group: English
model-index:
- name: bloom
  results:
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: arc_challenge
      type: arc_challenge
    metrics:
    - name: acc
      type: acc
      value: 0.4112627986348123
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: arc_easy
      type: arc_easy
    metrics:
    - name: acc
      type: acc
      value: 0.726010101010101
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: axb
      type: axb
    metrics:
    - name: acc
      type: acc
      value: 0.5751811594202898
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: axg
      type: axg
    metrics:
    - name: acc
      type: acc
      value: 0.5252808988764045
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: boolq
      type: boolq
    metrics:
    - name: acc
      type: acc
      value: 0.6345565749235474
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: cb
      type: cb
    metrics:
    - name: acc
      type: acc
      value: 0.3392857142857143
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: cola
      type: cola
    metrics:
    - name: acc
      type: acc
      value: 0.39022051773729627
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: copa
      type: copa
    metrics:
    - name: acc
      type: acc
      value: 0.56
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: crows_pairs_english
      type: crows_pairs_english
    metrics:
    - name: acc
      type: acc
      value: 0.5
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: crows_pairs_french
      type: crows_pairs_french
    metrics:
    - name: acc
      type: acc
      value: 0.505664877757901
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: diabla
      type: diabla
    metrics:
    - name: acc
      type: acc
      value: 0.2947981906750174
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_afr
      type: gsarti/flores_101_afr
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 4.25431550058444
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_amh
      type: gsarti/flores_101_amh
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 3.716877477347089
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_ara
      type: gsarti/flores_101_ara
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 1.7049030137120964
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_asm
      type: gsarti/flores_101_asm
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 6.576581380404954
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_ast
      type: gsarti/flores_101_ast
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 2.8562364775797944
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_azj
      type: gsarti/flores_101_azj
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 4.80721528624391
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_bel
      type: gsarti/flores_101_bel
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 2.7312177406635065
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_ben
      type: gsarti/flores_101_ben
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 5.993409478990023
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_bos
      type: gsarti/flores_101_bos
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 3.5936169095529493
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_bul
      type: gsarti/flores_101_bul
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 2.159035321398085
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_cat
      type: gsarti/flores_101_cat
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 2.167873680006659
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_ceb
      type: gsarti/flores_101_ceb
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 5.286975089885673
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_ces
      type: gsarti/flores_101_ces
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 3.4516208322236017
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_ckb
      type: gsarti/flores_101_ckb
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 3.7051034724765612
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_cym
      type: gsarti/flores_101_cym
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 7.0889312398688125
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_dan
      type: gsarti/flores_101_dan
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 3.4300748208111838
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_deu
      type: gsarti/flores_101_deu
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 2.3380585896268107
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_ell
      type: gsarti/flores_101_ell
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 1.9595604725375586
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_eng
      type: gsarti/flores_101_eng
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 1.8819637649637901
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_est
      type: gsarti/flores_101_est
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 5.773850600380297
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_fas
      type: gsarti/flores_101_fas
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 2.4306140728294086
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_fin
      type: gsarti/flores_101_fin
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 4.304305536244342
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_fra
      type: gsarti/flores_101_fra
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 1.9374688438541796
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_ful
      type: gsarti/flores_101_ful
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 9.740353097219378
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_gle
      type: gsarti/flores_101_gle
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 6.035269765075012
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_glg
      type: gsarti/flores_101_glg
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 2.365451129546636
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_guj
      type: gsarti/flores_101_guj
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 5.70676742569154
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_hau
      type: gsarti/flores_101_hau
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 8.855204288260023
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_heb
      type: gsarti/flores_101_heb
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 2.920943798471208
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_hin
      type: gsarti/flores_101_hin
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 5.452028001573195
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_hrv
      type: gsarti/flores_101_hrv
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 3.7056829077179225
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_hun
      type: gsarti/flores_101_hun
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 4.058579478967854
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_hye
      type: gsarti/flores_101_hye
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 3.127237816041562
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_ibo
      type: gsarti/flores_101_ibo
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 3.9500357969906683
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_ind
      type: gsarti/flores_101_ind
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 1.976163584180101
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_isl
      type: gsarti/flores_101_isl
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 5.500542085165231
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_ita
      type: gsarti/flores_101_ita
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 2.314465100752677
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_jav
      type: gsarti/flores_101_jav
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 4.942322446550142
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_jpn
      type: gsarti/flores_101_jpn
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 2.259421750521777
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_kam
      type: gsarti/flores_101_kam
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 9.743025325635475
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_kan
      type: gsarti/flores_101_kan
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 6.233724699944989
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_kat
      type: gsarti/flores_101_kat
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 2.0508893415872107
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_kaz
      type: gsarti/flores_101_kaz
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 3.0390148516287927
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_kea
      type: gsarti/flores_101_kea
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 7.147132270533836
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_khm
      type: gsarti/flores_101_khm
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 3.366514710252477
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_kir
      type: gsarti/flores_101_kir
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 3.2413845359487885
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_kor
      type: gsarti/flores_101_kor
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 2.9023196482741027
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_lao
      type: gsarti/flores_101_lao
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 2.331446855837494
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_lav
      type: gsarti/flores_101_lav
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 5.223609016485348
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_lin
      type: gsarti/flores_101_lin
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 4.847471204107301
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_lit
      type: gsarti/flores_101_lit
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 4.5432035498036765
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_ltz
      type: gsarti/flores_101_ltz
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 5.5910516978201015
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_lug
      type: gsarti/flores_101_lug
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 5.4301049946044175
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_luo
      type: gsarti/flores_101_luo
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 12.031029857399394
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_mal
      type: gsarti/flores_101_mal
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 4.794302548141229
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_mar
      type: gsarti/flores_101_mar
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 6.856682255407709
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_mkd
      type: gsarti/flores_101_mkd
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 2.3354144607382983
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_mlt
      type: gsarti/flores_101_mlt
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 9.04135227904975
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_mon
      type: gsarti/flores_101_mon
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 3.094907723618666
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_mri
      type: gsarti/flores_101_mri
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 5.2659698341456505
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_msa
      type: gsarti/flores_101_msa
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 2.2220779892820985
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_mya
      type: gsarti/flores_101_mya
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 2.5229159853414433
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_nld
      type: gsarti/flores_101_nld
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 2.799153089002766
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_nob
      type: gsarti/flores_101_nob
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 3.628942049758715
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_npi
      type: gsarti/flores_101_npi
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 6.666236527803879
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_nso
      type: gsarti/flores_101_nso
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 5.015319074943932
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_nya
      type: gsarti/flores_101_nya
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 4.938044040751036
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_oci
      type: gsarti/flores_101_oci
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 3.607440766288032
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_orm
      type: gsarti/flores_101_orm
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 11.31585044916705
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_ory
      type: gsarti/flores_101_ory
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 5.981891184515959
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_pan
      type: gsarti/flores_101_pan
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 4.7716086841502685
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_pol
      type: gsarti/flores_101_pol
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 3.01200174157614
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_por
      type: gsarti/flores_101_por
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 1.8411472115156693
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_pus
      type: gsarti/flores_101_pus
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 4.623872921169341
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_ron
      type: gsarti/flores_101_ron
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 3.049829411973529
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_rus
      type: gsarti/flores_101_rus
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 1.7083443875791493
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_slk
      type: gsarti/flores_101_slk
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 4.037719650548048
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_slv
      type: gsarti/flores_101_slv
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 4.141036287764831
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_sna
      type: gsarti/flores_101_sna
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 4.7109183690601295
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_snd
      type: gsarti/flores_101_snd
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 4.206170931541356
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_som
      type: gsarti/flores_101_som
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 9.154342083821405
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_spa
      type: gsarti/flores_101_spa
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 1.7955816311143258
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_srp
      type: gsarti/flores_101_srp
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 2.241096141430147
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_swe
      type: gsarti/flores_101_swe
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 3.344977179674293
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_swh
      type: gsarti/flores_101_swh
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 2.6844272218041634
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_tam
      type: gsarti/flores_101_tam
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 5.1645951632801745
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_tel
      type: gsarti/flores_101_tel
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 6.8098996634099445
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_tgk
      type: gsarti/flores_101_tgk
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 3.785457016715163
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_tgl
      type: gsarti/flores_101_tgl
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 3.7498953645610875
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_tha
      type: gsarti/flores_101_tha
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 2.104151663233468
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_tur
      type: gsarti/flores_101_tur
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 3.3178240103796037
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_ukr
      type: gsarti/flores_101_ukr
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 2.088543437159643
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_umb
      type: gsarti/flores_101_umb
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 11.766013385445124
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_urd
      type: gsarti/flores_101_urd
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 1.7788699847612357
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_uzb
      type: gsarti/flores_101_uzb
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 8.499879863290486
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_vie
      type: gsarti/flores_101_vie
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 1.65901207387262
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_wol
      type: gsarti/flores_101_wol
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 6.141703791276928
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_xho
      type: gsarti/flores_101_xho
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 4.690199677955254
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_yor
      type: gsarti/flores_101_yor
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 4.360585696242932
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_zho_simpl
      type: gsarti/flores_101_zho_simpl
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 2.1183545781883515
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_zho_trad
      type: gsarti/flores_101_zho_trad
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 2.273787884962656
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: gsarti/flores_101_zul
      type: gsarti/flores_101_zul
    metrics:
    - name: byte_perplexity
      type: byte_perplexity
      value: 6.016954767729589
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: headqa
      type: headqa
    metrics:
    - name: acc
      type: acc
      value: 0.3464624361779723
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: hellaswag
      type: hellaswag
    metrics:
    - name: acc
      type: acc
      value: 0.5353515236008763
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: lambada_mt_de
      type: lambada_mt_de
    metrics:
    - name: acc
      type: acc
      value: 0.3291286629148069
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: lambada_mt_en
      type: lambada_mt_en
    metrics:
    - name: acc
      type: acc
      value: 0.6720357073549389
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: lambada_mt_es
      type: lambada_mt_es
    metrics:
    - name: acc
      type: acc
      value: 0.476421502037648
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: lambada_mt_it
      type: lambada_mt_it
    metrics:
    - name: acc
      type: acc
      value: 0.4061711624296526
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: logiqa
      type: logiqa
    metrics:
    - name: acc
      type: acc
      value: 0.2350230414746544
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: mathqa
      type: mathqa
    metrics:
    - name: acc
      type: acc
      value: 0.27671691792294806
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: mc_taco
      type: mc_taco
    metrics:
    - name: em
      type: em
      value: 0.13063063063063063
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: mnli
      type: mnli
    metrics:
    - name: acc
      type: acc
      value: 0.3545565500406835
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: mnli_mismatched
      type: mnli_mismatched
    metrics:
    - name: acc
      type: acc
      value: 0.3545565500406835
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: mrpc
      type: mrpc
    metrics:
    - name: acc
      type: acc
      value: 0.3872549019607843
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: multirc
      type: multirc
    metrics:
    - name: acc
      type: acc
      value: 0.570957095709571
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: openbookqa
      type: openbookqa
    metrics:
    - name: acc
      type: acc
      value: 0.312
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: piqa
      type: piqa
    metrics:
    - name: acc
      type: acc
      value: 0.7812840043525572
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: prost
      type: prost
    metrics:
    - name: acc
      type: acc
      value: 0.2977156276686593
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: pubmedqa
      type: pubmedqa
    metrics:
    - name: acc
      type: acc
      value: 0.741
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: qnli
      type: qnli
    metrics:
    - name: acc
      type: acc
      value: 0.5172981878088962
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: qqp
      type: qqp
    metrics:
    - name: acc
      type: acc
      value: 0.5883007667573584
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: race
      type: race
    metrics:
    - name: acc
      type: acc
      value: 0.39043062200956935
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: rte
      type: rte
    metrics:
    - name: acc
      type: acc
      value: 0.5198555956678701
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: sciq
      type: sciq
    metrics:
    - name: acc
      type: acc
      value: 0.936
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: sst
      type: sst
    metrics:
    - name: acc
      type: acc
      value: 0.6043577981651376
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: triviaqa
      type: triviaqa
    metrics:
    - name: acc
      type: acc
      value: 0.18332891363917617
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: tydiqa_primary
      type: tydiqa_primary
    metrics:
    - name: acc
      type: acc
      value: 0.2809817301342725
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: webqs
      type: webqs
    metrics:
    - name: acc
      type: acc
      value: 0.061515748031496065
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: wic
      type: wic
    metrics:
    - name: acc
      type: acc
      value: 0.5062695924764891
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: winogrande
      type: winogrande
    metrics:
    - name: acc
      type: acc
      value: 0.7095501183898973
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: wnli
      type: wnli
    metrics:
    - name: acc
      type: acc
      value: 0.5704225352112676
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: wsc
      type: wsc
    metrics:
    - name: acc
      type: acc
      value: 0.5192307692307693
      verified: false
  - task:
      type: text-generation
      name: text generation
    dataset:
      name: humaneval
      type: humaneval
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.15524390243902436
      verified: false
    - name: pass@10
      type: pass@10
      value: 0.3220367632383857
      verified: false
    - name: pass@100
      type: pass@100
      value: 0.5545431515723145
      verified: false
---

<img src="https://s3.amazonaws.com/moonup/production/uploads/1657124309515-5f17f0a0925b9863e28ad517.png" alt="BigScience Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>

BigScience Large Open-science Open-access Multilingual Language Model  
Version 1.3 / 6.July.2022 - Current Checkpoint: **Training Iteration  95000** - Training Information: unique tokens: **341B** | total seen tokens: **366B**

---

# Model Details  

BLOOM is an autoregressive Large Language Model (LLM), trained to continue text from a prompt on vast amounts of text data using industrial-scale computational resources. As such, it is able to output coherent text in 46 languages and 13 programming languages that is hardly distinguishable from text written by humans. BLOOM can also be instructed to perform text tasks it hasn't been explicitly trained for, by casting them as text generation tasks.

## Basics
*This section provides information about the model type, version, license, funders, release date, developers, and contact information.*
*It is useful for anyone who wants to reference the model.*

<details>
<summary>Click to expand</summary>
  
**Developed by:** BigScience ([website](https://bigscience.huggingface.co))

*All collaborators are either volunteers or have an agreement with their employer. (Further breakdown of participants forthcoming.)*
    
**Model Type:** Transformer-based Language Model

**Version:** 1.0.0

**Languages:** Multiple; see [training data](#training-data)

**License:** RAIL License v1.0 ([link](https://huggingface.co/spaces/bigscience/license) / [article and FAQ](https://bigscience.huggingface.co/blog/the-bigscience-rail-license))

**Release Date Estimate:** Monday, 11.July.2022

**Send Questions to:** bigscience-contact@googlegroups.com

**Cite as:** BigScience, _BigScience Language Open-science Open-access Multilingual (BLOOM) Language Model_. International, May 2021-May 2022

**Funded by:** 
    
* The French government.

* Hugging Face ([website](https://huggingface.co)).

* Organizations of contributors.  *(Further breakdown of organizations forthcoming.)*

</details>


## Technical Specifications
*This section includes details about the model objective and architecture, and the compute infrastructure.*
*It is useful for people interested in model development.*

<details>
<summary>Click to expand</summary>

Please see [the BLOOM training README](https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml#readme) for full details on replicating training.

### Model Architecture and Objective

* Modified from Megatron-LM GPT2 (see [paper](https://arxiv.org/abs/1909.08053), [BLOOM Megatron code](https://github.com/bigscience-workshop/Megatron-DeepSpeed)):

* Decoder-only architecture

* Layer normalization applied to word embeddings layer (`StableEmbedding`; see [code](https://github.com/facebookresearch/bitsandbytes), [paper](https://arxiv.org/pdf/2110.02861.pdf))

* ALiBI positional encodings (see [paper](https://arxiv.org/pdf/2108.12409.pdf)), with GeLU activation functions

* 176 billion parameters:

    * 70 layers, 112 attention heads

    * Hidden layers are 14336-dimensional

    * Sequence length of 2048 tokens used (see [BLOOM tokenizer](https://huggingface.co/bigscience/tokenizer), [tokenizer description](#tokenization))

**Objective Function:** Cross Entropy with mean reduction (see [API documentation](https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html#torch.nn.CrossEntropyLoss)).
    
### Compute infrastructure
Jean Zay Public Supercomputer, provided by the French government (see [announcement](https://www.enseignementsup-recherche.gouv.fr/fr/signature-du-marche-d-acquisition-de-l-un-des-supercalculateurs-les-plus-puissants-d-europe-46733)).

#### Hardware

* 384 A100 80GB GPUs (48 nodes)
    
* Additional 32 A100 80GB GPUs (4 nodes) in reserve

* 8 GPUs per node Using NVLink 4 inter-gpu connects, 4 OmniPath links

* CPU: AMD

* CPU memory: 512GB per node

* GPU memory: 640GB per node

* Inter-node connect: Omni-Path Architecture (OPA)

* NCCL-communications network: a fully dedicated subnet

* Disc IO network: shared network with other types of nodes

#### Software

* Megatron-DeepSpeed ([Github link](https://github.com/bigscience-workshop/Megatron-DeepSpeed))

* DeepSpeed ([Github link](https://github.com/microsoft/DeepSpeed))

* PyTorch (pytorch-1.11 w/ CUDA-11.5; see [Github link](https://github.com/pytorch/pytorch))

* apex ([Github link](https://github.com/NVIDIA/apex))
    
</details>

---

# Training
*This section provides information about the training data, the speed and size of training elements, and the environmental impact of training.*
*It is useful for people who want to learn more about the model inputs and training footprint.*

<details>
<summary>Click to expand</summary>

## Training Data
*This section provides a high-level overview of the training data. It is relevant for anyone who wants to know the basics of what the model is learning.*

Details for each dataset are provided in individual [Data Cards](https://huggingface.co/spaces/bigscience/BigScienceCorpus), and the sizes of each of their contributions to the aggregated training data are presented in an [Interactive Corpus Map](https://huggingface.co/spaces/bigscience-catalogue-lm-data/corpus-map).

Training data includes:

-   46 natural languages
    
-   13 programming languages

-   In 1.6TB of pre-processed text, converted into 350B unique tokens (see [the tokenizer section](#tokenization) for more.)

### Languages
    
The pie chart shows the distribution of languages in training data.
   
![pie chart showing the distribution of languages in training data](https://github.com/bigscience-workshop/model_card/blob/main/assets/data/pie_v2.svg?raw=true)


The following tables shows the further distribution of Niger-Congo & Indic languages and programming languages in the training data.

Distribution of Niger Congo and Indic languages.
    
| Niger Congo    | Percentage |         | Indic     | Percentage |
|----------------|------------ |------  |-----------|------------|
| Chi Tumbuka    | 0.00002    |         | Assamese  | 0.01       |
| Kikuyu         | 0.00004    |         | Odia      | 0.04       |
| Bambara        | 0.00004    |         | Gujarati  | 0.04       |
| Akan           | 0.00007    |         | Marathi   | 0.05       |
| Xitsonga       | 0.00007    |         | Punjabi   | 0.05       |
| Sesotho        | 0.00007    |         | Kannada   | 0.06       |
| Chi Chewa      | 0.0001     |         | Nepali    | 0.07       |
| Setswana       | 0.0002     |         | Telugu    | 0.09       |
| Northern Sotho | 0.0002     |         | Malayalam | 0.10       |
| Fon            | 0.0002     |         | Urdu      | 0.10       |
| Kirundi        | 0.0003     |         | Tamil     | 0.20       |
| Wolof          | 0.0004     |         | Bengali   | 0.50       |
| Kuganda        | 0.0004     |         | Hindi     | 0.70       |
| Chi Shona      | 0.001      |
| Isi Zulu       | 0.001      |
| Igbo           | 0.001      |
| Xhosa          | 0.001      |
| Kinyarwanda    | 0.003      |
| Yoruba         | 0.006      |
| Swahili        | 0.02       |

Distribution of programming languages.
    
| Extension      | Language   | Number of files |
|----------------|------------|-----------------|
| java           | Java       | 5,407,724       |
| php            | PHP        | 4,942,186       |
| cpp            | C++        | 2,503,930       |
| py             | Python     | 2,435,072       |
| js             | JavaScript | 1,905,518       |
| cs             | C#         | 1,577,347       |
| rb             | Ruby       | 6,78,413        |
| cc             | C++        | 443,054         |
| hpp            | C++        | 391,048         |
| lua            | Lua        | 352,317         |
| go             | GO         | 227,763         |
| ts             | TypeScript | 195,254         |
| C              | C          | 134,537         |
| scala          | Scala      | 92,052          |
| hh             | C++        | 67,161          |
| H              | C++        | 55,899          |
| tsx            | TypeScript | 33,107          |
| rs             | Rust       | 29,693          |
| phpt           | PHP        | 9,702           |
| c++            | C++        | 1,342           |
| h++            | C++        | 791             |
| php3           | PHP        | 540             |
| phps           | PHP        | 270             |
| php5           | PHP        | 166             |
| php4           | PHP        | 29              |
    
### Preprocessing

**Tokenization:** The BLOOM tokenizer ([link](https://huggingface.co/bigscience/tokenizer)), a learned subword tokenizer trained using:
    
- A byte-level Byte Pair Encoding (BPE) algorithm 

- A simple pre-tokenization rule, no normalization

- A vocabulary size of 250,680

It was trained on a subset of a preliminary version of the corpus using alpha-weighting per language.  

## Speeds, Sizes, Times

Training logs: [Tensorboard link](https://huggingface.co/tensorboard/bigscience/tr11-176B-ml-logs/)

- Dates:
    
    - Started 11th March, 2022 11:42am PST

    - Estimated end: 5th July, 2022

- Checkpoint size:
    
    - Bf16 weights: 329GB
    
    - Full checkpoint with optimizer states: 2.3TB

- Training throughput: About 150 TFLOP per GPU per second

- Number of epochs: 1

- Estimated cost of training: Equivalent of $2-5M in cloud computing (including preliminary experiments)

- Server training location: Île-de-France, France


## Environmental Impact

The training supercomputer, Jean Zay ([website](http://www.idris.fr/eng/jean-zay/jean-zay-presentation-eng.html)), uses mostly nuclear energy. The heat generated by it is reused for heating campus housing.
    
**Estimated carbon emissions:**  *(Forthcoming.)*
    
**Estimated electricity usage:** *(Forthcoming.)*

</details>

---

# Uses

*This section addresses questions around how the model is intended to be used, discusses the foreseeable users of the model (including those affected by the model), and describes uses that are considered out of scope or misuse of the model.*
*It is useful for anyone considering using the model or who is affected by the model.*

<details>
<summary>Click to expand</summary>
    
## How to use

This model can be easily used and deployed using HuggingFace's ecosystem. This needs `transformers` and `accelerate` installed. The model can be downloaded as follows:

 <img src="https://s3.amazonaws.com/moonup/production/uploads/1657271608456-62441d1d9fdefb55a0b7d12c.png" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>

## Intended Use

This model is being created in order to enable public research on large language models (LLMs). LLMs are intended to be used for language generation or as a pretrained base model that can be further fine-tuned for specific tasks. Use cases below are not exhaustive.

### Direct Use

-   Text generation

-   Exploring characteristics of language generated by a language model

    -   Examples: Cloze tests, counterfactuals, generations with reframings

### Downstream Use

-   Tasks that leverage language models include: Information Extraction, Question Answering, Summarization

### Misuse and Out-of-scope Use
*This section addresses what users ought not do with the model.*

See the [BLOOM License](https://huggingface.co/spaces/bigscience/license), Attachment A, for detailed usage restrictions. The below list is non-exhaustive, but lists some easily foreseeable problematic use cases.

#### Out-of-scope Uses

Using the model in [high-stakes](#high-stakes) settings is out of scope for this model.  The model is not designed for [critical decisions](#critical-decisions) nor uses with any material consequences on an individual's livelihood or wellbeing. The model outputs content that appears factual but may not be correct.  

Out-of-scope Uses Include:

-   Usage in biomedical domains, political and legal domains, or finance domains

-   Usage for evaluating or scoring individuals, such as for employment, education, or credit

-   Applying the model for critical automatic decisions, generating factual content, creating reliable summaries, or generating predictions that must be correct

#### Misuse

Intentionally using the model for harm, violating [human rights](#human-rights), or other kinds of malicious activities, is a misuse of this model. This includes:

-   Spam generation

-   Disinformation and influence operations

-   Disparagement and defamation

-   Harassment and abuse
  
-   [Deception](#deception)

-   Unconsented impersonation and imitation

-   Unconsented surveillance 

-   Generating content without attribution to the model, as specified in the [RAIL License, Use Restrictions](https://huggingface.co/spaces/bigscience/license)

## Intended Users

### Direct Users

-   General Public

-   Researchers

-   Students

-   Educators

-   Engineers/developers

-   Non-commercial entities

-   Community advocates, including human and civil rights groups

### Indirect Users

-   Users of derivatives created by Direct Users, such as those using software with an [intended use](#intended-use)

-   Users of [Derivatives of the Model, as described in the License](https://huggingface.co/spaces/bigscience/license)

### Others Affected (Parties Prenantes)

-   People and groups referred to by the LLM

-   People and groups exposed to outputs of, or decisions based on, the LLM

-   People and groups whose original work is included in the LLM

</details>

---

# Risks and Limitations
*This section identifies foreseeable harms and misunderstandings.*
    
<details>
<summary>Click to expand</summary>

Model may:

-   Overrepresent some viewpoints and underrepresent others

-   Contain stereotypes
  
-   Contain [personal information](#personal-data-and-information)

-   Generate:

    -   Hateful, abusive, or violent language

    -   Discriminatory or prejudicial language

    -   Content that may not be appropriate for all settings, including sexual content

-   Make errors, including producing incorrect information as if it were factual

-   Generate irrelevant or repetitive outputs

-   Induce users into attributing human traits to it, such as sentience or consciousness

</details>

---

# Evaluation
*This section describes the evaluation protocols and provides the results.*


<details>
<summary>Click to expand</summary>

## Metrics 
*This section describes the different ways performance is calculated and why.*


Includes:

| Metric             | Why chosen                                                         |
|--------------------|--------------------------------------------------------------------|
| [Perplexity](#perplexity)         | Standard metric for quantifying model improvements during training |
| Cross Entropy [Loss](#loss) | Standard objective for language models.                            |

And multiple different metrics for specific tasks. _(More evaluation metrics forthcoming upon completion of evaluation protocol.)_

## Factors 
*This section lists some different aspects of BLOOM models. Its focus is on aspects that are likely to give rise to high variance in model behavior.*

- Language, such as English or Yoruba

- Domain, such as newswire or stories

- Demographic characteristics, such as gender or nationality

##  Results
*Results are based on the [Factors](#factors) and [Metrics](#metrics).*

**Zero-shot evaluations:**

See this repository for JSON files: https://github.com/bigscience-workshop/evaluation-results

| Task | Language | Metric | BLOOM-176B | OPT-175B* |
|:--------|:-----------------|:------------------------|-------------:|------------:|
| arc_challenge | eng | acc ↑ | 0.411 | 0.412 |
| arc_easy | eng | acc ↑ | 0.726 | 0.751 |
| axb (Median of 10 prompts) | eng | acc ↑ | 0.575 | 0.532 |
| axg (Median of 10 prompts) | eng | acc ↑ | 0.525 | 0.548 |
| boolq (Median of 11 prompts) | eng | acc ↑ | 0.635 | 0.622 |
| cb (Median of 15 prompts) | eng | acc ↑ | 0.339 | 0.411 |
| cola (Median of 5 prompts) | eng | acc ↑ | 0.39 | 0.444 |
| copa (Median of 9 prompts) | eng | acc ↑ | 0.56 | 0.55 |
| crows_pairs_english (Median of 6 prompts) | eng | acc ↑ | 0.5 | 0.502 |
| crows_pairs_french (Median of 7 prompts) | fra | acc ↑ | 0.506 | 0.499 |
| diabla (Median of 2 prompts) | eng | acc ↑ | 0.295 | 0.289 |
| gsarti/flores_101_afr | afr | byte_perplexity ↓ | 4.254 | 3.381 |
| gsarti/flores_101_amh | amh | byte_perplexity ↓ | 3.717 | 3.87 |
| gsarti/flores_101_ara | ara | byte_perplexity ↓ | 1.705 | 2.42 |
| gsarti/flores_101_asm | asm | byte_perplexity ↓ | 6.577 | 3.028 |
| gsarti/flores_101_ast | ast | byte_perplexity ↓ | 2.856 | 4.737 |
| gsarti/flores_101_azj | azj | byte_perplexity ↓ | 4.807 | 4.767 |
| gsarti/flores_101_bel | bel | byte_perplexity ↓ | 2.731 | 2.557 |
| gsarti/flores_101_ben | ben | byte_perplexity ↓ | 5.993 | 2.243 |
| gsarti/flores_101_bos | bos | byte_perplexity ↓ | 3.594 | 2.668 |
| gsarti/flores_101_bul | bul | byte_perplexity ↓ | 2.159 | 2.099 |
| gsarti/flores_101_cat | cat | byte_perplexity ↓ | 2.168 | 2.837 |
| gsarti/flores_101_ceb | ceb | byte_perplexity ↓ | 5.287 | 3.636 |
| gsarti/flores_101_ces | ces | byte_perplexity ↓ | 3.452 | 2.749 |
| gsarti/flores_101_ckb | ckb | byte_perplexity ↓ | 3.705 | 4.688 |
| gsarti/flores_101_cym | cym | byte_perplexity ↓ | 7.089 | 5.075 |
| gsarti/flores_101_dan | dan | byte_perplexity ↓ | 3.43 | 2.492 |
| gsarti/flores_101_deu | deu | byte_perplexity ↓ | 2.338 | 2.099 |
| gsarti/flores_101_ell | ell | byte_perplexity ↓ | 1.96 | 1.811 |
| gsarti/flores_101_eng | eng | byte_perplexity ↓ | 1.882 | 1.9 |
| gsarti/flores_101_est | est | byte_perplexity ↓ | 5.774 | 3.533 |
| gsarti/flores_101_fas | fas | byte_perplexity ↓ | 2.431 | 2.444 |
| gsarti/flores_101_fin | fin | byte_perplexity ↓ | 4.304 | 2.601 |
| gsarti/flores_101_fra | fra | byte_perplexity ↓ | 1.937 | 1.984 |
| gsarti/flores_101_ful | ful | byte_perplexity ↓ | 9.74 | 11.84 |
| gsarti/flores_101_gle | gle | byte_perplexity ↓ | 6.035 | 3.914 |
| gsarti/flores_101_glg | glg | byte_perplexity ↓ | 2.365 | 3.015 |
| gsarti/flores_101_guj | guj | byte_perplexity ↓ | 5.707 | 2.438 |
| gsarti/flores_101_hau | hau | byte_perplexity ↓ | 8.855 | 5.283 |
| gsarti/flores_101_heb | heb | byte_perplexity ↓ | 2.921 | 2.903 |
| gsarti/flores_101_hin | hin | byte_perplexity ↓ | 5.452 | 1.86 |
| gsarti/flores_101_hrv | hrv | byte_perplexity ↓ | 3.706 | 2.715 |
| gsarti/flores_101_hun | hun | byte_perplexity ↓ | 4.059 | 2.865 |
| gsarti/flores_101_hye | hye | byte_perplexity ↓ | 3.127 | 3.411 |
| gsarti/flores_101_ibo | ibo | byte_perplexity ↓ | 3.95 | 8.008 |
| gsarti/flores_101_ind | ind | byte_perplexity ↓ | 1.976 | 2.632 |
| gsarti/flores_101_isl | isl | byte_perplexity ↓ | 5.501 | 4.701 |
| gsarti/flores_101_ita | ita | byte_perplexity ↓ | 2.314 | 2.104 |
| gsarti/flores_101_jav | jav | byte_perplexity ↓ | 4.942 | 8.16 |
| gsarti/flores_101_jpn | jpn | byte_perplexity ↓ | 2.259 | 2.198 |
| gsarti/flores_101_kam | kam | byte_perplexity ↓ | 9.743 | 10.981 |
| gsarti/flores_101_kan | kan | byte_perplexity ↓ | 6.234 | 2.373 |
| gsarti/flores_101_kat | kat | byte_perplexity ↓ | 2.051 | 2.466 |
| gsarti/flores_101_kaz | kaz | byte_perplexity ↓ | 3.039 | 4.376 |
| gsarti/flores_101_kea | kea | byte_perplexity ↓ | 7.147 | 9.632 |
| gsarti/flores_101_khm | khm | byte_perplexity ↓ | 3.367 | 2.646 |
| gsarti/flores_101_kir | kir | byte_perplexity ↓ | 3.241 | 4.522 |
| gsarti/flores_101_kor | kor | byte_perplexity ↓ | 2.902 | 3.376 |
| gsarti/flores_101_lao | lao | byte_perplexity ↓ | 2.331 | 3.106 |
| gsarti/flores_101_lav | lav | byte_perplexity ↓ | 5.224 | 4.811 |
| gsarti/flores_101_lin | lin | byte_perplexity ↓ | 4.847 | 8.871 |
| gsarti/flores_101_lit | lit | byte_perplexity ↓ | 4.543 | 5.183 |
| gsarti/flores_101_ltz | ltz | byte_perplexity ↓ | 5.591 | 7.158 |
| gsarti/flores_101_lug | lug | byte_perplexity ↓ | 5.43 | 7.399 |
| gsarti/flores_101_luo | luo | byte_perplexity ↓ | 12.031 | 11.951 |
| gsarti/flores_101_mal | mal | byte_perplexity ↓ | 4.794 | 2.054 |
| gsarti/flores_101_mar | mar | byte_perplexity ↓ | 6.857 | 2.274 |
| gsarti/flores_101_mkd | mkd | byte_perplexity ↓ | 2.335 | 2.538 |
| gsarti/flores_101_mlt | mlt | byte_perplexity ↓ | 9.041 | 5.996 |
| gsarti/flores_101_mon | mon | byte_perplexity ↓ | 3.095 | 4.519 |
| gsarti/flores_101_mri | mri | byte_perplexity ↓ | 5.266 | 4.438 |
| gsarti/flores_101_msa | msa | byte_perplexity ↓ | 2.222 | 2.935 |
| gsarti/flores_101_mya | mya | byte_perplexity ↓ | 2.523 | 2.413 |
| gsarti/flores_101_nld | nld | byte_perplexity ↓ | 2.799 | 2.293 |
| gsarti/flores_101_nob | nob | byte_perplexity ↓ | 3.629 | 2.593 |
| gsarti/flores_101_npi | npi | byte_perplexity ↓ | 6.666 | 2.499 |
| gsarti/flores_101_nso | nso | byte_perplexity ↓ | 5.015 | 8.485 |
| gsarti/flores_101_nya | nya | byte_perplexity ↓ | 4.938 | 7.548 |
| gsarti/flores_101_oci | oci | byte_perplexity ↓ | 3.607 | 4.936 |
| gsarti/flores_101_orm | orm | byte_perplexity ↓ | 11.316 | 7.145 |
| gsarti/flores_101_ory | ory | byte_perplexity ↓ | 5.982 | 2.668 |
| gsarti/flores_101_pan | pan | byte_perplexity ↓ | 4.772 | 2.782 |
| gsarti/flores_101_pol | pol | byte_perplexity ↓ | 3.012 | 2.432 |
| gsarti/flores_101_por | por | byte_perplexity ↓ | 1.841 | 2.178 |
| gsarti/flores_101_pus | pus | byte_perplexity ↓ | 4.624 | 4.785 |
| gsarti/flores_101_ron | ron | byte_perplexity ↓ | 3.05 | 2.197 |
| gsarti/flores_101_rus | rus | byte_perplexity ↓ | 1.708 | 1.689 |
| gsarti/flores_101_slk | slk | byte_perplexity ↓ | 4.038 | 3.419 |
| gsarti/flores_101_slv | slv | byte_perplexity ↓ | 4.141 | 3.582 |
| gsarti/flores_101_sna | sna | byte_perplexity ↓ | 4.711 | 5.588 |
| gsarti/flores_101_snd | snd | byte_perplexity ↓ | 4.206 | 5.667 |
| gsarti/flores_101_som | som | byte_perplexity ↓ | 9.154 | 4.788 |
| gsarti/flores_101_spa | spa | byte_perplexity ↓ | 1.796 | 2.098 |
| gsarti/flores_101_srp | srp | byte_perplexity ↓ | 2.241 | 2.688 |
| gsarti/flores_101_swe | swe | byte_perplexity ↓ | 3.345 | 2.468 |
| gsarti/flores_101_swh | swh | byte_perplexity ↓ | 2.684 | 4.473 |
| gsarti/flores_101_tam | tam | byte_perplexity ↓ | 5.165 | 2.024 |
| gsarti/flores_101_tel | tel | byte_perplexity ↓ | 6.81 | 2.407 |
| gsarti/flores_101_tgk | tgk | byte_perplexity ↓ | 3.785 | 4.899 |
| gsarti/flores_101_tgl | tgl | byte_perplexity ↓ | 3.75 | 2.738 |
| gsarti/flores_101_tha | tha | byte_perplexity ↓ | 2.104 | 2.035 |
| gsarti/flores_101_tur | tur | byte_perplexity ↓ | 3.318 | 2.622 |
| gsarti/flores_101_ukr | ukr | byte_perplexity ↓ | 2.089 | 1.93 |
| gsarti/flores_101_umb | umb | byte_perplexity ↓ | 11.766 | 11.64 |
| gsarti/flores_101_urd | urd | byte_perplexity ↓ | 1.779 | 2.982 |
| gsarti/flores_101_uzb | uzb | byte_perplexity ↓ | 8.5 | 13.209 |
| gsarti/flores_101_vie | vie | byte_perplexity ↓ | 1.659 | 2.229 |
| gsarti/flores_101_wol | wol | byte_perplexity ↓ | 6.142 | 13.945 |
| gsarti/flores_101_xho | xho | byte_perplexity ↓ | 4.69 | 8.42 |
| gsarti/flores_101_yor | yor | byte_perplexity ↓ | 4.361 | 7.636 |
| gsarti/flores_101_zho_simpl | zho_simpl | byte_perplexity ↓ | 2.118 | 5.113 |
| gsarti/flores_101_zho_trad | zho_trad | byte_perplexity ↓ | 2.274 | 5.67 |
| gsarti/flores_101_zul | zul | byte_perplexity ↓ | 6.017 | 7.341 |
| headqa | esp | acc ↑ | 0.346 | 0.244 |
| hellaswag | eng | acc ↑ | 0.535 | 0.592 |
| lambada_mt_de | deu | acc ↑ | 0.329 | 0.358 |
| lambada_mt_en | eng | acc ↑ | 0.672 | 0.747 |
| lambada_mt_es | esp | acc ↑ | 0.476 | 0.397 |
| lambada_mt_it | ita | acc ↑ | 0.406 | 0.409 |
| logiqa | eng | acc ↑ | 0.235 | 0.244 |
| mathqa | eng | acc ↑ | 0.277 | 0.268 |
| mc_taco | eng | em ↑ | 0.131 | 0.124 |
| mnli (Median of 15 prompts) | eng | acc ↑ | 0.355 | 0.36 |
| mnli_mismatched (Median of 15 prompts) | eng | acc ↑ | 0.355 | 0.36 |
| mrpc | eng | acc ↑ | 0.387 | 0.446 |
| multirc (Median of 11 prompts) | eng | acc ↑ | 0.571 | 0.599 |
| openbookqa | eng | acc ↑ | 0.312 | 0.322 |
| piqa | eng | acc ↑ | 0.781 | 0.791 |
| prost | eng | acc ↑ | 0.298 | 0.299 |
| pubmedqa | eng | acc ↑ | 0.741 | 0.709 |
| qnli | eng | acc ↑ | 0.517 | 0.554 |
| qqp (Median of 7 prompts) | eng | acc ↑ | 0.588 | 0.395 |
| race | eng | acc ↑ | 0.39 | 0.402 |
| rte (Median of 6 prompts) | eng | acc ↑ | 0.52 | 0.495 |
| sciq | eng | acc ↑ | 0.936 | 0.948 |
| sst (Median of 6 prompts) | eng | acc ↑ | 0.604 | 0.647 |
| triviaqa | eng | acc ↑ | 0.183 | 0.342 |
| tydiqa_primary (Median of 16 prompts) | eng | acc ↑ | 0.281 | 0.148 |
| webqs | eng | acc ↑ | 0.062 | 0.159 |
| wic (Median of 11 prompts) | eng | acc ↑ | 0.506 | 0.498 |
| winogrande | eng | acc ↑ | 0.71 | 0.736 |
| wnli (Median of 6 prompts) | eng | acc ↑ | 0.57 | 0.563 |
| wsc (Median of 11 prompts) | eng | acc ↑ | 0.519 | 0.413 |
| humaneval | python | pass@1 ↑ | 0.155 | 0.0 |
| humaneval | python | pass@10 ↑ | 0.322 | 0.0 |
| humaneval | python | pass@100 ↑ | 0.555 | 0.003 |


**Train-time Evaluation:**

Final checkpoint after 95K steps:

- Training Loss: 1.939

- Validation Loss: 2.061

- Perplexity: 7.045

For more see: https://huggingface.co/bigscience/tr11-176B-ml-logs

</details>

---

# Recommendations

*This section provides information on warnings and potential mitigations.*

<details>
<summary>Click to expand</summary>

-   Indirect users should be made aware when the content they're working with is created by the LLM.

-   Users should be aware of [Risks and Limitations](#risks-and-limitations), and include an appropriate age disclaimer or blocking interface as necessary.

-   Models trained or finetuned downstream of BLOOM LM should include an updated Model Card.

-   Users of the model should provide mechanisms for those affected to provide feedback, such as an email address for comments.

</details>

---

# Glossary and Calculations

*This section defines common terms and how metrics are calculated.*
<details>
<summary>Click to expand</summary>

-   <a name="loss">**Loss:**</a> A calculation of the difference between what the model has learned and what the data shows ("groundtruth"). The lower the loss, the better. The training process aims to minimize the loss. 

-   <a name="perplexity">**Perplexity:**</a> This is based on what the model estimates the probability of new data is. The lower the perplexity, the better.  If the model is 100% correct at predicting the next token it will see, then the perplexity is 1. Mathematically this is calculated using entropy. 

-   <a name="high-stakes">**High-stakes settings:**</a> Such as those identified as "high-risk AI systems" and "unacceptable risk AI systems" in the European Union's proposed [Artificial Intelligence (AI) Act](https://artificialintelligenceact.eu/annexes/).

-   <a name="critical-decisions">**Critical decisions:**</a> Such as those defined in [the United States' proposed Algorithmic Accountability Act](https://www.congress.gov/117/bills/s3572/BILLS-117s3572is.pdf).

-   <a name="human-rights">**Human rights:**</a> Includes those rights defined in the [Universal Declaration of Human Rights](https://www.un.org/sites/un2.un.org/files/2021/03/udhr.pdf).

-  <a name="personal-data-and-information">**Personal Data and Personal Information:**</a> Personal data and information is defined in multiple data protection regulations, such as "[personal data](https://gdpr-info.eu/issues/personal-data/)" in the [European Union's General Data Protection Regulation](https://gdpr-info.eu); and "personal information" in the Republic of South Africa's [Protection of Personal Information Act](https://www.gov.za/sites/default/files/gcis_document/201409/3706726-11act4of2013popi.pdf), The People's Republic of China's [Personal information protection law](http://en.npc.gov.cn.cdurl.cn/2021-12/29/c_694559.htm).
  
- <a name="sensitive-characteristics">**Sensitive characteristics:**</a> This includes specifically protected categories in human rights (see [UHDR, Article 2](https://www.un.org/sites/un2.un.org/files/2021/03/udhr.pdf)) and personal information regulation (see GDPR, [Article 9; Protection of Personal Information Act, Chapter 1](https://www.gov.za/sites/default/files/gcis_document/201409/3706726-11act4of2013popi.pdf))

- <a name="deception">**Deception:**</a> Doing something to intentionally mislead individuals to believe something that is false, such as by creating deadbots or chatbots on social media posing as real people, or generating text documents without making consumers aware that the text is machine generated.

</details>

---

# More Information
*This section provides links to writing on dataset creation, technical specifications, lessons learned, and initial results.*

<details>
<summary>Click to expand</summary>

## Intermediate checkpoints

For academic (or any) usage, we published the intermediate checkpoints, corresponding to the model state at each 5000 steps. Please follow [this link](https://huggingface.co/bigscience/bloom-176-intermediate) to get these checkpoints.

    
## Dataset Creation

Blog post detailing the design choices during the dataset creation: https://bigscience.huggingface.co/blog/building-a-tb-scale-multilingual-dataset-for-language-modeling

## Technical Specifications

Blog post summarizing how the architecture, size, shape, and pre-training duration where selected: https://bigscience.huggingface.co/blog/what-language-model-to-train-if-you-have-two-million-gpu-hours

More details on the architecture/optimizer: https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml

Blog post on the hardware/engineering side: https://bigscience.huggingface.co/blog/which-hardware-to-train-a-176b-parameters-model

Details on the distributed setup used for the training: https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml

Tensorboard updated during the training: https://huggingface.co/bigscience/tr11-176B-ml-logs/tensorboard#scalars&tagFilter=loss

## Lessons

Insights on how to approach training, negative results: https://github.com/bigscience-workshop/bigscience/blob/master/train/lessons-learned.md

Details on the obstacles overcome during the preparation on the engineering side (instabilities, optimization of training throughput, so many technical tricks and questions): https://github.com/bigscience-workshop/bigscience/blob/master/train/tr11-176B-ml/chronicles.md

## Initial Results

Initial prompting experiments using interim checkpoints: https://huggingface.co/spaces/bigscience/bloom-book

</details>

---
    
# Model Card Authors
*Ordered roughly chronologically and by amount of time spent.*

Margaret Mitchell, Giada Pistilli, Yacine Jernite, Ezinwanne Ozoani, Marissa Gerchick, Nazneen Rajani, Sasha Luccioni, Irene Solaiman, Maraim Masoud, Somaieh Nikpoor, Carlos Muñoz Ferrandis, Stas Bekman, Christopher Akiki, Danish Contractor, David Lansky, Angelina McMillan-Major, Tristan Thrush, Suzana Ilić, Gérard Dupont, Shayne Longpre, Manan Dey, Stella Biderman, Douwe Kiela, Emi Baylor, Teven Le Scao, Aaron Gokaslan, Julien Launay, Niklas Muennighoff