Upload 6 files
Browse files- .gitignore +1 -0
- README.md +132 -0
- config.json +142 -22
- pytorch_model.bin +3 -0
- training_args.bin +3 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
checkpoint-*/
|
README.md
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
tags:
|
4 |
+
- vision
|
5 |
+
- image-segmentation
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: segformer-b0-finetuned-segments-sidewalk-2
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# segformer-b0-finetuned-segments-sidewalk-2
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the pixel_values, the label and the {'pixel_values': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=1920x1080 at 0x7FCAFB662B60>, 'label': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=1x1 at 0x7FCAFB662B30>} datasets.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 3.5116
|
20 |
+
- Mean Iou: 0.0268
|
21 |
+
- Mean Accuracy: 0.0661
|
22 |
+
- Overall Accuracy: 0.2418
|
23 |
+
- Accuracy Unlabeled: nan
|
24 |
+
- Accuracy Flat-road: 0.0351
|
25 |
+
- Accuracy Flat-sidewalk: 0.5938
|
26 |
+
- Accuracy Flat-crosswalk: 0.3236
|
27 |
+
- Accuracy Flat-cyclinglane: 0.0338
|
28 |
+
- Accuracy Flat-parkingdriveway: 0.0555
|
29 |
+
- Accuracy Flat-railtrack: nan
|
30 |
+
- Accuracy Flat-curb: 0.0006
|
31 |
+
- Accuracy Human-person: 0.0
|
32 |
+
- Accuracy Human-rider: 0.0003
|
33 |
+
- Accuracy Vehicle-car: 0.3388
|
34 |
+
- Accuracy Vehicle-truck: 0.0016
|
35 |
+
- Accuracy Vehicle-bus: 0.0
|
36 |
+
- Accuracy Vehicle-tramtrain: 0.2141
|
37 |
+
- Accuracy Vehicle-motorcycle: 0.0053
|
38 |
+
- Accuracy Vehicle-bicycle: 0.0
|
39 |
+
- Accuracy Vehicle-caravan: 0.0
|
40 |
+
- Accuracy Vehicle-cartrailer: 0.0888
|
41 |
+
- Accuracy Construction-building: 0.0391
|
42 |
+
- Accuracy Construction-door: 0.0
|
43 |
+
- Accuracy Construction-wall: 0.0074
|
44 |
+
- Accuracy Construction-fenceguardrail: 0.0239
|
45 |
+
- Accuracy Construction-bridge: 0.0
|
46 |
+
- Accuracy Construction-tunnel: nan
|
47 |
+
- Accuracy Construction-stairs: 0.0006
|
48 |
+
- Accuracy Object-pole: 0.0593
|
49 |
+
- Accuracy Object-trafficsign: 0.0
|
50 |
+
- Accuracy Object-trafficlight: 0.0665
|
51 |
+
- Accuracy Nature-vegetation: 0.0846
|
52 |
+
- Accuracy Nature-terrain: 0.0002
|
53 |
+
- Accuracy Sky: 0.0030
|
54 |
+
- Accuracy Void-ground: 0.0635
|
55 |
+
- Accuracy Void-dynamic: 0.0004
|
56 |
+
- Accuracy Void-static: 0.0720
|
57 |
+
- Accuracy Void-unclear: 0.0022
|
58 |
+
- Iou Unlabeled: 0.0
|
59 |
+
- Iou Flat-road: 0.0297
|
60 |
+
- Iou Flat-sidewalk: 0.4826
|
61 |
+
- Iou Flat-crosswalk: 0.0624
|
62 |
+
- Iou Flat-cyclinglane: 0.0279
|
63 |
+
- Iou Flat-parkingdriveway: 0.0203
|
64 |
+
- Iou Flat-railtrack: 0.0
|
65 |
+
- Iou Flat-curb: 0.0005
|
66 |
+
- Iou Human-person: 0.0
|
67 |
+
- Iou Human-rider: 0.0001
|
68 |
+
- Iou Vehicle-car: 0.1389
|
69 |
+
- Iou Vehicle-truck: 0.0000
|
70 |
+
- Iou Vehicle-bus: 0.0
|
71 |
+
- Iou Vehicle-tramtrain: 0.0013
|
72 |
+
- Iou Vehicle-motorcycle: 0.0007
|
73 |
+
- Iou Vehicle-bicycle: 0.0
|
74 |
+
- Iou Vehicle-caravan: 0.0
|
75 |
+
- Iou Vehicle-cartrailer: 0.0004
|
76 |
+
- Iou Construction-building: 0.0383
|
77 |
+
- Iou Construction-door: 0.0
|
78 |
+
- Iou Construction-wall: 0.0057
|
79 |
+
- Iou Construction-fenceguardrail: 0.0127
|
80 |
+
- Iou Construction-bridge: 0.0
|
81 |
+
- Iou Construction-tunnel: 0.0
|
82 |
+
- Iou Construction-stairs: 0.0001
|
83 |
+
- Iou Object-pole: 0.0085
|
84 |
+
- Iou Object-trafficsign: 0.0
|
85 |
+
- Iou Object-trafficlight: 0.0002
|
86 |
+
- Iou Nature-vegetation: 0.0818
|
87 |
+
- Iou Nature-terrain: 0.0002
|
88 |
+
- Iou Sky: 0.0027
|
89 |
+
- Iou Void-ground: 0.0115
|
90 |
+
- Iou Void-dynamic: 0.0001
|
91 |
+
- Iou Void-static: 0.0102
|
92 |
+
- Iou Void-unclear: 0.0021
|
93 |
+
|
94 |
+
## Model description
|
95 |
+
|
96 |
+
More information needed
|
97 |
+
|
98 |
+
## Intended uses & limitations
|
99 |
+
|
100 |
+
More information needed
|
101 |
+
|
102 |
+
## Training and evaluation data
|
103 |
+
|
104 |
+
More information needed
|
105 |
+
|
106 |
+
## Training procedure
|
107 |
+
|
108 |
+
### Training hyperparameters
|
109 |
+
|
110 |
+
The following hyperparameters were used during training:
|
111 |
+
- learning_rate: 6e-05
|
112 |
+
- train_batch_size: 2
|
113 |
+
- eval_batch_size: 2
|
114 |
+
- seed: 42
|
115 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
116 |
+
- lr_scheduler_type: linear
|
117 |
+
- num_epochs: 0.025
|
118 |
+
|
119 |
+
### Training results
|
120 |
+
|
121 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear |
|
122 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:|
|
123 |
+
| 3.5028 | 0.01 | 5 | 3.5307 | 0.0194 | 0.0486 | 0.1779 | nan | 0.0150 | 0.4721 | 0.2351 | 0.0249 | 0.0409 | nan | 0.0003 | 0.0 | 0.0003 | 0.1461 | 0.0231 | 0.0 | 0.2163 | 0.0047 | 0.0 | 0.0 | 0.0318 | 0.0223 | 0.0003 | 0.0136 | 0.0166 | 0.0 | nan | 0.0008 | 0.0511 | 0.0 | 0.0665 | 0.0261 | 0.0005 | 0.0010 | 0.0697 | 0.0014 | 0.0720 | 0.0020 | 0.0 | 0.0128 | 0.3979 | 0.0509 | 0.0221 | 0.0166 | 0.0 | 0.0003 | 0.0 | 0.0001 | 0.0769 | 0.0000 | 0.0 | 0.0015 | 0.0003 | 0.0 | 0.0 | 0.0001 | 0.0219 | 0.0001 | 0.0089 | 0.0103 | 0.0 | 0.0 | 0.0001 | 0.0070 | 0.0 | 0.0001 | 0.0257 | 0.0005 | 0.0009 | 0.0109 | 0.0004 | 0.0099 | 0.0019 |
|
124 |
+
| 3.3613 | 0.03 | 10 | 3.5116 | 0.0268 | 0.0661 | 0.2418 | nan | 0.0351 | 0.5938 | 0.3236 | 0.0338 | 0.0555 | nan | 0.0006 | 0.0 | 0.0003 | 0.3388 | 0.0016 | 0.0 | 0.2141 | 0.0053 | 0.0 | 0.0 | 0.0888 | 0.0391 | 0.0 | 0.0074 | 0.0239 | 0.0 | nan | 0.0006 | 0.0593 | 0.0 | 0.0665 | 0.0846 | 0.0002 | 0.0030 | 0.0635 | 0.0004 | 0.0720 | 0.0022 | 0.0 | 0.0297 | 0.4826 | 0.0624 | 0.0279 | 0.0203 | 0.0 | 0.0005 | 0.0 | 0.0001 | 0.1389 | 0.0000 | 0.0 | 0.0013 | 0.0007 | 0.0 | 0.0 | 0.0004 | 0.0383 | 0.0 | 0.0057 | 0.0127 | 0.0 | 0.0 | 0.0001 | 0.0085 | 0.0 | 0.0002 | 0.0818 | 0.0002 | 0.0027 | 0.0115 | 0.0001 | 0.0102 | 0.0021 |
|
125 |
+
|
126 |
+
|
127 |
+
### Framework versions
|
128 |
+
|
129 |
+
- Transformers 4.28.0
|
130 |
+
- Pytorch 2.0.0+cu118
|
131 |
+
- Datasets 2.12.0
|
132 |
+
- Tokenizers 0.13.3
|
config.json
CHANGED
@@ -1,24 +1,144 @@
|
|
1 |
{
|
2 |
-
"
|
3 |
-
"
|
4 |
-
|
5 |
-
|
6 |
-
"
|
7 |
-
"
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
}
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "nvidia/mit-b0",
|
3 |
+
"architectures": [
|
4 |
+
"SegformerForSemanticSegmentation"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"classifier_dropout_prob": 0.1,
|
8 |
+
"decoder_hidden_size": 256,
|
9 |
+
"depths": [
|
10 |
+
2,
|
11 |
+
2,
|
12 |
+
2,
|
13 |
+
2
|
14 |
+
],
|
15 |
+
"downsampling_rates": [
|
16 |
+
1,
|
17 |
+
4,
|
18 |
+
8,
|
19 |
+
16
|
20 |
+
],
|
21 |
+
"drop_path_rate": 0.1,
|
22 |
+
"hidden_act": "gelu",
|
23 |
+
"hidden_dropout_prob": 0.0,
|
24 |
+
"hidden_sizes": [
|
25 |
+
32,
|
26 |
+
64,
|
27 |
+
160,
|
28 |
+
256
|
29 |
+
],
|
30 |
+
"id2label": {
|
31 |
+
"0": "unlabeled",
|
32 |
+
"1": "flat-road",
|
33 |
+
"2": "flat-sidewalk",
|
34 |
+
"3": "flat-crosswalk",
|
35 |
+
"4": "flat-cyclinglane",
|
36 |
+
"5": "flat-parkingdriveway",
|
37 |
+
"6": "flat-railtrack",
|
38 |
+
"7": "flat-curb",
|
39 |
+
"8": "human-person",
|
40 |
+
"9": "human-rider",
|
41 |
+
"10": "vehicle-car",
|
42 |
+
"11": "vehicle-truck",
|
43 |
+
"12": "vehicle-bus",
|
44 |
+
"13": "vehicle-tramtrain",
|
45 |
+
"14": "vehicle-motorcycle",
|
46 |
+
"15": "vehicle-bicycle",
|
47 |
+
"16": "vehicle-caravan",
|
48 |
+
"17": "vehicle-cartrailer",
|
49 |
+
"18": "construction-building",
|
50 |
+
"19": "construction-door",
|
51 |
+
"20": "construction-wall",
|
52 |
+
"21": "construction-fenceguardrail",
|
53 |
+
"22": "construction-bridge",
|
54 |
+
"23": "construction-tunnel",
|
55 |
+
"24": "construction-stairs",
|
56 |
+
"25": "object-pole",
|
57 |
+
"26": "object-trafficsign",
|
58 |
+
"27": "object-trafficlight",
|
59 |
+
"28": "nature-vegetation",
|
60 |
+
"29": "nature-terrain",
|
61 |
+
"30": "sky",
|
62 |
+
"31": "void-ground",
|
63 |
+
"32": "void-dynamic",
|
64 |
+
"33": "void-static",
|
65 |
+
"34": "void-unclear"
|
66 |
+
},
|
67 |
+
"image_size": 224,
|
68 |
+
"initializer_range": 0.02,
|
69 |
+
"label2id": {
|
70 |
+
"construction-bridge": 22,
|
71 |
+
"construction-building": 18,
|
72 |
+
"construction-door": 19,
|
73 |
+
"construction-fenceguardrail": 21,
|
74 |
+
"construction-stairs": 24,
|
75 |
+
"construction-tunnel": 23,
|
76 |
+
"construction-wall": 20,
|
77 |
+
"flat-crosswalk": 3,
|
78 |
+
"flat-curb": 7,
|
79 |
+
"flat-cyclinglane": 4,
|
80 |
+
"flat-parkingdriveway": 5,
|
81 |
+
"flat-railtrack": 6,
|
82 |
+
"flat-road": 1,
|
83 |
+
"flat-sidewalk": 2,
|
84 |
+
"human-person": 8,
|
85 |
+
"human-rider": 9,
|
86 |
+
"nature-terrain": 29,
|
87 |
+
"nature-vegetation": 28,
|
88 |
+
"object-pole": 25,
|
89 |
+
"object-trafficlight": 27,
|
90 |
+
"object-trafficsign": 26,
|
91 |
+
"sky": 30,
|
92 |
+
"unlabeled": 0,
|
93 |
+
"vehicle-bicycle": 15,
|
94 |
+
"vehicle-bus": 12,
|
95 |
+
"vehicle-car": 10,
|
96 |
+
"vehicle-caravan": 16,
|
97 |
+
"vehicle-cartrailer": 17,
|
98 |
+
"vehicle-motorcycle": 14,
|
99 |
+
"vehicle-tramtrain": 13,
|
100 |
+
"vehicle-truck": 11,
|
101 |
+
"void-dynamic": 32,
|
102 |
+
"void-ground": 31,
|
103 |
+
"void-static": 33,
|
104 |
+
"void-unclear": 34
|
105 |
+
},
|
106 |
+
"layer_norm_eps": 1e-06,
|
107 |
+
"mlp_ratios": [
|
108 |
+
4,
|
109 |
+
4,
|
110 |
+
4,
|
111 |
+
4
|
112 |
+
],
|
113 |
+
"model_type": "segformer",
|
114 |
+
"num_attention_heads": [
|
115 |
+
1,
|
116 |
+
2,
|
117 |
+
5,
|
118 |
+
8
|
119 |
+
],
|
120 |
+
"num_channels": 3,
|
121 |
+
"num_encoder_blocks": 4,
|
122 |
+
"patch_sizes": [
|
123 |
+
7,
|
124 |
+
3,
|
125 |
+
3,
|
126 |
+
3
|
127 |
+
],
|
128 |
+
"reshape_last_stage": true,
|
129 |
+
"semantic_loss_ignore_index": 255,
|
130 |
+
"sr_ratios": [
|
131 |
+
8,
|
132 |
+
4,
|
133 |
+
2,
|
134 |
+
1
|
135 |
+
],
|
136 |
+
"strides": [
|
137 |
+
4,
|
138 |
+
2,
|
139 |
+
2,
|
140 |
+
2
|
141 |
+
],
|
142 |
+
"torch_dtype": "float32",
|
143 |
+
"transformers_version": "4.28.0"
|
144 |
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f3a25b59df4d72177aefa7da301720876eee6141eb8a6d0f14a4f53c4011d1f1
|
3 |
+
size 14965709
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f94f15f40abf8bc8c84c95cbcf3f0fbeacfd120539a0ee8bb1ed472e2b4da8d1
|
3 |
+
size 3707
|