bilal01 commited on
Commit
24abf5e
1 Parent(s): 7fc2fda

Upload 6 files

Browse files
Files changed (5) hide show
  1. .gitignore +1 -0
  2. README.md +132 -0
  3. config.json +142 -22
  4. pytorch_model.bin +3 -0
  5. training_args.bin +3 -0
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ checkpoint-*/
README.md ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ tags:
4
+ - vision
5
+ - image-segmentation
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: segformer-b0-finetuned-segments-sidewalk-2
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # segformer-b0-finetuned-segments-sidewalk-2
16
+
17
+ This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the pixel_values, the label and the {'pixel_values': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=1920x1080 at 0x7FCAFB662B60>, 'label': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=1x1 at 0x7FCAFB662B30>} datasets.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 3.5116
20
+ - Mean Iou: 0.0268
21
+ - Mean Accuracy: 0.0661
22
+ - Overall Accuracy: 0.2418
23
+ - Accuracy Unlabeled: nan
24
+ - Accuracy Flat-road: 0.0351
25
+ - Accuracy Flat-sidewalk: 0.5938
26
+ - Accuracy Flat-crosswalk: 0.3236
27
+ - Accuracy Flat-cyclinglane: 0.0338
28
+ - Accuracy Flat-parkingdriveway: 0.0555
29
+ - Accuracy Flat-railtrack: nan
30
+ - Accuracy Flat-curb: 0.0006
31
+ - Accuracy Human-person: 0.0
32
+ - Accuracy Human-rider: 0.0003
33
+ - Accuracy Vehicle-car: 0.3388
34
+ - Accuracy Vehicle-truck: 0.0016
35
+ - Accuracy Vehicle-bus: 0.0
36
+ - Accuracy Vehicle-tramtrain: 0.2141
37
+ - Accuracy Vehicle-motorcycle: 0.0053
38
+ - Accuracy Vehicle-bicycle: 0.0
39
+ - Accuracy Vehicle-caravan: 0.0
40
+ - Accuracy Vehicle-cartrailer: 0.0888
41
+ - Accuracy Construction-building: 0.0391
42
+ - Accuracy Construction-door: 0.0
43
+ - Accuracy Construction-wall: 0.0074
44
+ - Accuracy Construction-fenceguardrail: 0.0239
45
+ - Accuracy Construction-bridge: 0.0
46
+ - Accuracy Construction-tunnel: nan
47
+ - Accuracy Construction-stairs: 0.0006
48
+ - Accuracy Object-pole: 0.0593
49
+ - Accuracy Object-trafficsign: 0.0
50
+ - Accuracy Object-trafficlight: 0.0665
51
+ - Accuracy Nature-vegetation: 0.0846
52
+ - Accuracy Nature-terrain: 0.0002
53
+ - Accuracy Sky: 0.0030
54
+ - Accuracy Void-ground: 0.0635
55
+ - Accuracy Void-dynamic: 0.0004
56
+ - Accuracy Void-static: 0.0720
57
+ - Accuracy Void-unclear: 0.0022
58
+ - Iou Unlabeled: 0.0
59
+ - Iou Flat-road: 0.0297
60
+ - Iou Flat-sidewalk: 0.4826
61
+ - Iou Flat-crosswalk: 0.0624
62
+ - Iou Flat-cyclinglane: 0.0279
63
+ - Iou Flat-parkingdriveway: 0.0203
64
+ - Iou Flat-railtrack: 0.0
65
+ - Iou Flat-curb: 0.0005
66
+ - Iou Human-person: 0.0
67
+ - Iou Human-rider: 0.0001
68
+ - Iou Vehicle-car: 0.1389
69
+ - Iou Vehicle-truck: 0.0000
70
+ - Iou Vehicle-bus: 0.0
71
+ - Iou Vehicle-tramtrain: 0.0013
72
+ - Iou Vehicle-motorcycle: 0.0007
73
+ - Iou Vehicle-bicycle: 0.0
74
+ - Iou Vehicle-caravan: 0.0
75
+ - Iou Vehicle-cartrailer: 0.0004
76
+ - Iou Construction-building: 0.0383
77
+ - Iou Construction-door: 0.0
78
+ - Iou Construction-wall: 0.0057
79
+ - Iou Construction-fenceguardrail: 0.0127
80
+ - Iou Construction-bridge: 0.0
81
+ - Iou Construction-tunnel: 0.0
82
+ - Iou Construction-stairs: 0.0001
83
+ - Iou Object-pole: 0.0085
84
+ - Iou Object-trafficsign: 0.0
85
+ - Iou Object-trafficlight: 0.0002
86
+ - Iou Nature-vegetation: 0.0818
87
+ - Iou Nature-terrain: 0.0002
88
+ - Iou Sky: 0.0027
89
+ - Iou Void-ground: 0.0115
90
+ - Iou Void-dynamic: 0.0001
91
+ - Iou Void-static: 0.0102
92
+ - Iou Void-unclear: 0.0021
93
+
94
+ ## Model description
95
+
96
+ More information needed
97
+
98
+ ## Intended uses & limitations
99
+
100
+ More information needed
101
+
102
+ ## Training and evaluation data
103
+
104
+ More information needed
105
+
106
+ ## Training procedure
107
+
108
+ ### Training hyperparameters
109
+
110
+ The following hyperparameters were used during training:
111
+ - learning_rate: 6e-05
112
+ - train_batch_size: 2
113
+ - eval_batch_size: 2
114
+ - seed: 42
115
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
116
+ - lr_scheduler_type: linear
117
+ - num_epochs: 0.025
118
+
119
+ ### Training results
120
+
121
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear |
122
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:|
123
+ | 3.5028 | 0.01 | 5 | 3.5307 | 0.0194 | 0.0486 | 0.1779 | nan | 0.0150 | 0.4721 | 0.2351 | 0.0249 | 0.0409 | nan | 0.0003 | 0.0 | 0.0003 | 0.1461 | 0.0231 | 0.0 | 0.2163 | 0.0047 | 0.0 | 0.0 | 0.0318 | 0.0223 | 0.0003 | 0.0136 | 0.0166 | 0.0 | nan | 0.0008 | 0.0511 | 0.0 | 0.0665 | 0.0261 | 0.0005 | 0.0010 | 0.0697 | 0.0014 | 0.0720 | 0.0020 | 0.0 | 0.0128 | 0.3979 | 0.0509 | 0.0221 | 0.0166 | 0.0 | 0.0003 | 0.0 | 0.0001 | 0.0769 | 0.0000 | 0.0 | 0.0015 | 0.0003 | 0.0 | 0.0 | 0.0001 | 0.0219 | 0.0001 | 0.0089 | 0.0103 | 0.0 | 0.0 | 0.0001 | 0.0070 | 0.0 | 0.0001 | 0.0257 | 0.0005 | 0.0009 | 0.0109 | 0.0004 | 0.0099 | 0.0019 |
124
+ | 3.3613 | 0.03 | 10 | 3.5116 | 0.0268 | 0.0661 | 0.2418 | nan | 0.0351 | 0.5938 | 0.3236 | 0.0338 | 0.0555 | nan | 0.0006 | 0.0 | 0.0003 | 0.3388 | 0.0016 | 0.0 | 0.2141 | 0.0053 | 0.0 | 0.0 | 0.0888 | 0.0391 | 0.0 | 0.0074 | 0.0239 | 0.0 | nan | 0.0006 | 0.0593 | 0.0 | 0.0665 | 0.0846 | 0.0002 | 0.0030 | 0.0635 | 0.0004 | 0.0720 | 0.0022 | 0.0 | 0.0297 | 0.4826 | 0.0624 | 0.0279 | 0.0203 | 0.0 | 0.0005 | 0.0 | 0.0001 | 0.1389 | 0.0000 | 0.0 | 0.0013 | 0.0007 | 0.0 | 0.0 | 0.0004 | 0.0383 | 0.0 | 0.0057 | 0.0127 | 0.0 | 0.0 | 0.0001 | 0.0085 | 0.0 | 0.0002 | 0.0818 | 0.0002 | 0.0027 | 0.0115 | 0.0001 | 0.0102 | 0.0021 |
125
+
126
+
127
+ ### Framework versions
128
+
129
+ - Transformers 4.28.0
130
+ - Pytorch 2.0.0+cu118
131
+ - Datasets 2.12.0
132
+ - Tokenizers 0.13.3
config.json CHANGED
@@ -1,24 +1,144 @@
1
  {
2
- "do_normalize": true,
3
- "do_reduce_labels": true,
4
- "do_rescale": true,
5
- "do_resize": true,
6
- "feature_extractor_type": "SegformerFeatureExtractor",
7
- "image_mean": [
8
- 0.485,
9
- 0.456,
10
- 0.406
11
- ],
12
- "image_processor_type": "SegformerFeatureExtractor",
13
- "image_std": [
14
- 0.229,
15
- 0.224,
16
- 0.225
17
- ],
18
- "resample": 2,
19
- "rescale_factor": 0.00392156862745098,
20
- "size": {
21
- "height": 512,
22
- "width": 512
23
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  }
 
1
  {
2
+ "_name_or_path": "nvidia/mit-b0",
3
+ "architectures": [
4
+ "SegformerForSemanticSegmentation"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "classifier_dropout_prob": 0.1,
8
+ "decoder_hidden_size": 256,
9
+ "depths": [
10
+ 2,
11
+ 2,
12
+ 2,
13
+ 2
14
+ ],
15
+ "downsampling_rates": [
16
+ 1,
17
+ 4,
18
+ 8,
19
+ 16
20
+ ],
21
+ "drop_path_rate": 0.1,
22
+ "hidden_act": "gelu",
23
+ "hidden_dropout_prob": 0.0,
24
+ "hidden_sizes": [
25
+ 32,
26
+ 64,
27
+ 160,
28
+ 256
29
+ ],
30
+ "id2label": {
31
+ "0": "unlabeled",
32
+ "1": "flat-road",
33
+ "2": "flat-sidewalk",
34
+ "3": "flat-crosswalk",
35
+ "4": "flat-cyclinglane",
36
+ "5": "flat-parkingdriveway",
37
+ "6": "flat-railtrack",
38
+ "7": "flat-curb",
39
+ "8": "human-person",
40
+ "9": "human-rider",
41
+ "10": "vehicle-car",
42
+ "11": "vehicle-truck",
43
+ "12": "vehicle-bus",
44
+ "13": "vehicle-tramtrain",
45
+ "14": "vehicle-motorcycle",
46
+ "15": "vehicle-bicycle",
47
+ "16": "vehicle-caravan",
48
+ "17": "vehicle-cartrailer",
49
+ "18": "construction-building",
50
+ "19": "construction-door",
51
+ "20": "construction-wall",
52
+ "21": "construction-fenceguardrail",
53
+ "22": "construction-bridge",
54
+ "23": "construction-tunnel",
55
+ "24": "construction-stairs",
56
+ "25": "object-pole",
57
+ "26": "object-trafficsign",
58
+ "27": "object-trafficlight",
59
+ "28": "nature-vegetation",
60
+ "29": "nature-terrain",
61
+ "30": "sky",
62
+ "31": "void-ground",
63
+ "32": "void-dynamic",
64
+ "33": "void-static",
65
+ "34": "void-unclear"
66
+ },
67
+ "image_size": 224,
68
+ "initializer_range": 0.02,
69
+ "label2id": {
70
+ "construction-bridge": 22,
71
+ "construction-building": 18,
72
+ "construction-door": 19,
73
+ "construction-fenceguardrail": 21,
74
+ "construction-stairs": 24,
75
+ "construction-tunnel": 23,
76
+ "construction-wall": 20,
77
+ "flat-crosswalk": 3,
78
+ "flat-curb": 7,
79
+ "flat-cyclinglane": 4,
80
+ "flat-parkingdriveway": 5,
81
+ "flat-railtrack": 6,
82
+ "flat-road": 1,
83
+ "flat-sidewalk": 2,
84
+ "human-person": 8,
85
+ "human-rider": 9,
86
+ "nature-terrain": 29,
87
+ "nature-vegetation": 28,
88
+ "object-pole": 25,
89
+ "object-trafficlight": 27,
90
+ "object-trafficsign": 26,
91
+ "sky": 30,
92
+ "unlabeled": 0,
93
+ "vehicle-bicycle": 15,
94
+ "vehicle-bus": 12,
95
+ "vehicle-car": 10,
96
+ "vehicle-caravan": 16,
97
+ "vehicle-cartrailer": 17,
98
+ "vehicle-motorcycle": 14,
99
+ "vehicle-tramtrain": 13,
100
+ "vehicle-truck": 11,
101
+ "void-dynamic": 32,
102
+ "void-ground": 31,
103
+ "void-static": 33,
104
+ "void-unclear": 34
105
+ },
106
+ "layer_norm_eps": 1e-06,
107
+ "mlp_ratios": [
108
+ 4,
109
+ 4,
110
+ 4,
111
+ 4
112
+ ],
113
+ "model_type": "segformer",
114
+ "num_attention_heads": [
115
+ 1,
116
+ 2,
117
+ 5,
118
+ 8
119
+ ],
120
+ "num_channels": 3,
121
+ "num_encoder_blocks": 4,
122
+ "patch_sizes": [
123
+ 7,
124
+ 3,
125
+ 3,
126
+ 3
127
+ ],
128
+ "reshape_last_stage": true,
129
+ "semantic_loss_ignore_index": 255,
130
+ "sr_ratios": [
131
+ 8,
132
+ 4,
133
+ 2,
134
+ 1
135
+ ],
136
+ "strides": [
137
+ 4,
138
+ 2,
139
+ 2,
140
+ 2
141
+ ],
142
+ "torch_dtype": "float32",
143
+ "transformers_version": "4.28.0"
144
  }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3a25b59df4d72177aefa7da301720876eee6141eb8a6d0f14a4f53c4011d1f1
3
+ size 14965709
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f94f15f40abf8bc8c84c95cbcf3f0fbeacfd120539a0ee8bb1ed472e2b4da8d1
3
+ size 3707