--- license: other tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b0-finetuned-segments-sidewalk-2 results: [] --- # segformer-b0-finetuned-segments-sidewalk-2 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the pixel_values, the label and the {'pixel_values': , 'label': } datasets. It achieves the following results on the evaluation set: - Loss: 3.5116 - Mean Iou: 0.0268 - Mean Accuracy: 0.0661 - Overall Accuracy: 0.2418 - Accuracy Unlabeled: nan - Accuracy Flat-road: 0.0351 - Accuracy Flat-sidewalk: 0.5938 - Accuracy Flat-crosswalk: 0.3236 - Accuracy Flat-cyclinglane: 0.0338 - Accuracy Flat-parkingdriveway: 0.0555 - Accuracy Flat-railtrack: nan - Accuracy Flat-curb: 0.0006 - Accuracy Human-person: 0.0 - Accuracy Human-rider: 0.0003 - Accuracy Vehicle-car: 0.3388 - Accuracy Vehicle-truck: 0.0016 - Accuracy Vehicle-bus: 0.0 - Accuracy Vehicle-tramtrain: 0.2141 - Accuracy Vehicle-motorcycle: 0.0053 - Accuracy Vehicle-bicycle: 0.0 - Accuracy Vehicle-caravan: 0.0 - Accuracy Vehicle-cartrailer: 0.0888 - Accuracy Construction-building: 0.0391 - Accuracy Construction-door: 0.0 - Accuracy Construction-wall: 0.0074 - Accuracy Construction-fenceguardrail: 0.0239 - Accuracy Construction-bridge: 0.0 - Accuracy Construction-tunnel: nan - Accuracy Construction-stairs: 0.0006 - Accuracy Object-pole: 0.0593 - Accuracy Object-trafficsign: 0.0 - Accuracy Object-trafficlight: 0.0665 - Accuracy Nature-vegetation: 0.0846 - Accuracy Nature-terrain: 0.0002 - Accuracy Sky: 0.0030 - Accuracy Void-ground: 0.0635 - Accuracy Void-dynamic: 0.0004 - Accuracy Void-static: 0.0720 - Accuracy Void-unclear: 0.0022 - Iou Unlabeled: 0.0 - Iou Flat-road: 0.0297 - Iou Flat-sidewalk: 0.4826 - Iou Flat-crosswalk: 0.0624 - Iou Flat-cyclinglane: 0.0279 - Iou Flat-parkingdriveway: 0.0203 - Iou Flat-railtrack: 0.0 - Iou Flat-curb: 0.0005 - Iou Human-person: 0.0 - Iou Human-rider: 0.0001 - Iou Vehicle-car: 0.1389 - Iou Vehicle-truck: 0.0000 - Iou Vehicle-bus: 0.0 - Iou Vehicle-tramtrain: 0.0013 - Iou Vehicle-motorcycle: 0.0007 - Iou Vehicle-bicycle: 0.0 - Iou Vehicle-caravan: 0.0 - Iou Vehicle-cartrailer: 0.0004 - Iou Construction-building: 0.0383 - Iou Construction-door: 0.0 - Iou Construction-wall: 0.0057 - Iou Construction-fenceguardrail: 0.0127 - Iou Construction-bridge: 0.0 - Iou Construction-tunnel: 0.0 - Iou Construction-stairs: 0.0001 - Iou Object-pole: 0.0085 - Iou Object-trafficsign: 0.0 - Iou Object-trafficlight: 0.0002 - Iou Nature-vegetation: 0.0818 - Iou Nature-terrain: 0.0002 - Iou Sky: 0.0027 - Iou Void-ground: 0.0115 - Iou Void-dynamic: 0.0001 - Iou Void-static: 0.0102 - Iou Void-unclear: 0.0021 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 0.025 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:| | 3.5028 | 0.01 | 5 | 3.5307 | 0.0194 | 0.0486 | 0.1779 | nan | 0.0150 | 0.4721 | 0.2351 | 0.0249 | 0.0409 | nan | 0.0003 | 0.0 | 0.0003 | 0.1461 | 0.0231 | 0.0 | 0.2163 | 0.0047 | 0.0 | 0.0 | 0.0318 | 0.0223 | 0.0003 | 0.0136 | 0.0166 | 0.0 | nan | 0.0008 | 0.0511 | 0.0 | 0.0665 | 0.0261 | 0.0005 | 0.0010 | 0.0697 | 0.0014 | 0.0720 | 0.0020 | 0.0 | 0.0128 | 0.3979 | 0.0509 | 0.0221 | 0.0166 | 0.0 | 0.0003 | 0.0 | 0.0001 | 0.0769 | 0.0000 | 0.0 | 0.0015 | 0.0003 | 0.0 | 0.0 | 0.0001 | 0.0219 | 0.0001 | 0.0089 | 0.0103 | 0.0 | 0.0 | 0.0001 | 0.0070 | 0.0 | 0.0001 | 0.0257 | 0.0005 | 0.0009 | 0.0109 | 0.0004 | 0.0099 | 0.0019 | | 3.3613 | 0.03 | 10 | 3.5116 | 0.0268 | 0.0661 | 0.2418 | nan | 0.0351 | 0.5938 | 0.3236 | 0.0338 | 0.0555 | nan | 0.0006 | 0.0 | 0.0003 | 0.3388 | 0.0016 | 0.0 | 0.2141 | 0.0053 | 0.0 | 0.0 | 0.0888 | 0.0391 | 0.0 | 0.0074 | 0.0239 | 0.0 | nan | 0.0006 | 0.0593 | 0.0 | 0.0665 | 0.0846 | 0.0002 | 0.0030 | 0.0635 | 0.0004 | 0.0720 | 0.0022 | 0.0 | 0.0297 | 0.4826 | 0.0624 | 0.0279 | 0.0203 | 0.0 | 0.0005 | 0.0 | 0.0001 | 0.1389 | 0.0000 | 0.0 | 0.0013 | 0.0007 | 0.0 | 0.0 | 0.0004 | 0.0383 | 0.0 | 0.0057 | 0.0127 | 0.0 | 0.0 | 0.0001 | 0.0085 | 0.0 | 0.0002 | 0.0818 | 0.0002 | 0.0027 | 0.0115 | 0.0001 | 0.0102 | 0.0021 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3