--- library_name: transformers license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer model-index: - name: speecht5_finetune_binisha results: [] --- # speecht5_finetune_binisha This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3836 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 1500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 0.6028 | 2.7586 | 100 | 0.5187 | | 0.5195 | 5.5172 | 200 | 0.4851 | | 0.5075 | 8.2759 | 300 | 0.4708 | | 0.462 | 11.0345 | 400 | 0.4609 | | 0.4429 | 13.7931 | 500 | 0.4294 | | 0.4303 | 16.5517 | 600 | 0.4249 | | 0.4172 | 19.3103 | 700 | 0.4184 | | 0.402 | 22.0690 | 800 | 0.4077 | | 0.3898 | 24.8276 | 900 | 0.3975 | | 0.3966 | 27.5862 | 1000 | 0.4197 | | 0.3773 | 30.3448 | 1100 | 0.3955 | | 0.3658 | 33.1034 | 1200 | 0.3878 | | 0.3644 | 35.8621 | 1300 | 0.3878 | | 0.3622 | 38.6207 | 1400 | 0.3841 | | 0.3671 | 41.3793 | 1500 | 0.3836 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3