File size: 13,741 Bytes
4924d26 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7deec8641bd0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7deec8641c60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7deec8641cf0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7deec8641d80>", "_build": "<function ActorCriticPolicy._build at 0x7deec8641e10>", "forward": "<function ActorCriticPolicy.forward at 0x7deec8641ea0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7deec8641f30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7deec8641fc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7deec8642050>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7deec86420e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7deec8642170>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7deec8642200>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7deec8623e40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690162716115279403, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2ju7yeC68/xVrQva9Gor6WuDA8rrJhvQAAAAAAAAAAzfjJvJKROD+icBq+EF2kvjrFEr1KotU8AAAAAAAAAACaHfq8vI0vP2TON72BKra+HkdQvNav8DsAAAAAAAAAAL27Wb6bG1w/NgibO8Lsj776y7m9CO/NPQAAAAAAAAAAGhPvvSnILbqKi4g9vFhkPBMoQLrQKkS9AACAPwAAgD+AQEs9P69+PpvgWb4+N2O+YGLZvceuujwAAAAAAAAAAEa8Pb74c8Y+NwUdPrKVnb50oIC6Mq2DvQAAAAAAAAAAZlSrPYfaSj54W3K+Gf51vqXi+Lwk+Y29AAAAAAAAAAANKoW9V28uP9CTkbzDPra+W0mCvcHSCb0AAAAAAAAAAJpT1Lx8Ahk9QpqfvTZLS76MF2y9SUicPQAAAAAAAAAA80iJvcDdgj7wjAO9fhKVvkt0qzsVbKa9AAAAAAAAAAD6+XQ+Jg4JPwXHW77WPJe+2F6zPTbFPb4AAAAAAAAAAAD9orxWKwU9I2covvNDb748V3S9wjOrPQAAAAAAAAAAMysuvAx1jD4T5qS9nu9svuBeybzup2G9AAAAAAAAAABN6Se+vQejPp/aND7ZkVy+cw2vPIaclj0AAAAAAAAAAE1X5r3YKvc9mj8RPSkPeL6tkwc8AkaCvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG//0NjLB9GMAWyUTX0BjAF0lEdAmfyC+QEIPnV9lChoBkdAa2yVgQYk3WgHTRABaAhHQJn9RvjwQUZ1fZQoaAZHQHDpMw+MZP5oB00ZAWgIR0CZ/nsCDEm6dX2UKGgGR0BtUcpmVZ9vaAdNGgFoCEdAmf7wi7kGRnV9lChoBkdAcvLTI/7iymgHTUQBaAhHQJn/xTo+wC91fZQoaAZHQG/v8LBsQ/ZoB00NAWgIR0CaAAjN6gM+dX2UKGgGR0BuAHYe1a4daAdL+2gIR0CaABy2x6fKdX2UKGgGR0BxJlb/wRXfaAdL/GgIR0CaAC4SpR4ydX2UKGgGR0BxkNp+MIeHaAdNGwFoCEdAmgGKfjCHh3V9lChoBkdAbWQ4zabnYGgHTSUBaAhHQJoCitNi6QN1fZQoaAZHQHCXY6r/82toB00yAWgIR0CaAqkOI68ydX2UKGgGR0BuA6rcTJyRaAdNEAFoCEdAmgTYLkS26XV9lChoBkdAcZ4FM7EHdGgHTQ4BaAhHQJoFlW5paid1fZQoaAZHQHIYPzSThYNoB01PAWgIR0CaBegogFHKdX2UKGgGR0BwyGv4dp7DaAdL/GgIR0CaBi1KoQ4CdX2UKGgGR0Bw/Wj8DSw4aAdNrwFoCEdAmgZGz4UN8XV9lChoBkdAT9IaP0Zm7WgHS+BoCEdAmgfI1UEPlXV9lChoBkdAco0W7voeP2gHTUcBaAhHQJoIAv38GcF1fZQoaAZHQHCCs76pHZtoB00lAWgIR0CaCLF7laKUdX2UKGgGR0BttXViF0xNaAdNHAFoCEdAmgjQ/HHWBnV9lChoBkdAbCIuxKQJX2gHTQ0BaAhHQJoJg3BHkLh1fZQoaAZHQG5kkaVD8cdoB00eAWgIR0CaCbOfdyksdX2UKGgGR0BdmUfs/pt8aAdN6ANoCEdAmgq+AAhjfHV9lChoBkdAbqBFXq7iAGgHTS0BaAhHQJoL5T0g8r91fZQoaAZHQFCFRYRujypoB0vWaAhHQJoMMX/HYHx1fZQoaAZHQG+us4cWCVdoB017AWgIR0CaDO/wAlv7dX2UKGgGR0BwKQnb7CSBaAdNTQFoCEdAmg3uyVv/BHV9lChoBkdAcjhGIsRQJ2gHTQUBaAhHQJoOaakRBeJ1fZQoaAZHQHLwPdEb5uZoB0v6aAhHQJoOmQp4KQd1fZQoaAZHQHEv2Qjlgc9oB02BAWgIR0CaD7YODrZ8dX2UKGgGR0BuEL0L+glGaAdNPQFoCEdAmhDv9pAUtnV9lChoBkdAcdL/Khcqv2gHTQkBaAhHQJoRnMjeKsN1fZQoaAZHQHAXCuEEkjZoB00iAWgIR0CaEdYqG1x9dX2UKGgGR0BuCQ1cdHUdaAdNKwFoCEdAmhHwlv60pnV9lChoBkdAMx46bONYKmgHS+NoCEdAmhJVWCEpRXV9lChoBkdAcRywqAjIJmgHTSMBaAhHQJoTYJWvKU51fZQoaAZHQHCcEd/8VHpoB00+AWgIR0CaFB3tKIzndX2UKGgGR0BtHrB68g6maAdNVwFoCEdAmhRXvlU6xXV9lChoBkdAcIP1dxAB1mgHTSwBaAhHQJoXd7gKnel1fZQoaAZHQG8aUYTCcgBoB00QAWgIR0CaF4IT4+KTdX2UKGgGR0BvQPM+u/1yaAdN/wFoCEdAmheNn003wXV9lChoBkdAb9AqlxffGmgHTVABaAhHQJoXoNTcZcd1fZQoaAZHQHDN2DtgKF9oB01jAWgIR0CaGI1Gb1AadX2UKGgGR0BuIzftQbdaaAdNKwFoCEdAmhjmFBY3enV9lChoBkdAc74auOjqOmgHS+loCEdAmhk0SAYpD3V9lChoBkdAbeeAWi1zAGgHTUEBaAhHQJotNlnRLK51fZQoaAZHQHKaP+85CF9oB00EAWgIR0CaLlZzxPO6dX2UKGgGR0Bw+XmwJPZaaAdNVAFoCEdAmi8j7/GVA3V9lChoBkdAbcRiay8jA2gHTRQBaAhHQJovgUWVNYd1fZQoaAZHQHDeNvwVj7RoB006AWgIR0CaMAbhWHUMdX2UKGgGR0BwhTe54GD+aAdNJgFoCEdAmjEoePq9oXV9lChoBkdAcVQ7bL2YfGgHTV4BaAhHQJoxjkQwsXl1fZQoaAZHQHDM8BhhH9ZoB00hAWgIR0CaMbiLVFx5dX2UKGgGR0Bx6Gg00m+kaAdNIgFoCEdAmjHvwiJO33V9lChoBkdAcqC5zo2XLWgHTR8BaAhHQJo1tG3F1jl1fZQoaAZHQHGUB+F10T1oB00lAWgIR0CaNfHUMG5ddX2UKGgGR0BweSfoRqXXaAdNLwFoCEdAmjZdVNpM6HV9lChoBkdAcdjvmYBvJmgHTS4BaAhHQJo4GIYWLxZ1fZQoaAZHQHBOajrRjSZoB01UAWgIR0CaOHxA0KqodX2UKGgGR0BDyWk8A7xNaAdL2GgIR0CaOP27nPmgdX2UKGgGR0BvfDdcjZ+QaAdNMwFoCEdAmjlkG3WnTHV9lChoBkdAcG1nRsuWbGgHTUEBaAhHQJo5lOclPad1fZQoaAZHQG68lS88La5oB00GAWgIR0CaOo9dNWU9dX2UKGgGR0Bx01OgxrSFaAdNIwFoCEdAmjrr9/BnBnV9lChoBkdAcNVz7uUliWgHTUoBaAhHQJo7LpPhybR1fZQoaAZHQG5B132VVxVoB00JAWgIR0CaO9CmdiDvdX2UKGgGR0BxNz3yqdYoaAdNDAFoCEdAmj6ti6QNkXV9lChoBkdAbLWY2sJY1mgHTS4BaAhHQJo/xS9/SYx1fZQoaAZHQG7ddaMaS9xoB01HAWgIR0CaQIV6u4gBdX2UKGgGR0Bv5YwTM7lraAdNegFoCEdAmkILjtG/e3V9lChoBkdAcXrZoPCl8GgHTQ4BaAhHQJpCb3sXzlN1fZQoaAZHQHJ4TTrmhdtoB00cAWgIR0CaQqor4FibdX2UKGgGR0BwIAsbvPToaAdNMQFoCEdAmkNREa2nbnV9lChoBkdAccvZzxPO6mgHS/5oCEdAmkOf6CUX53V9lChoBkdAcQTlpXZGrmgHS/NoCEdAmkT/bKzRhXV9lChoBkdAcLheVcD8tWgHTRsBaAhHQJpFHoGIKtx1fZQoaAZHQHDsKHCXQdFoB00vAWgIR0CaRazQNTcZdX2UKGgGR0BtsO3DvVmSaAdNQQFoCEdAmkWsjVx0dXV9lChoBkdAa8J2FFlTWGgHTUoBaAhHQJpFwIhQm/p1fZQoaAZHQHNrvXTVlPJoB00TAWgIR0CaRehgVoHtdX2UKGgGR0BwAAeYD1XeaAdNPgFoCEdAmkbdmlImPnV9lChoBkdAcEfMOPNmlWgHTSEBaAhHQJpG3/p+tr91fZQoaAZHQG6yT1kDp1RoB0v8aAhHQJpHeM98qnZ1fZQoaAZHQHKqcUEgW8BoB00HAWgIR0CaSGyKNyYHdX2UKGgGR0BxAbMgU1yeaAdNUAFoCEdAmkuZkPMB63V9lChoBkdAcSenZ00WM2gHTQoBaAhHQJpMEoOQQtl1fZQoaAZHQG2f0k4WDYhoB01KAWgIR0CaTQY+B6KMdX2UKGgGR0Bw3W9OARTTaAdL+mgIR0CaTh9kjHGTdX2UKGgGR0BwvViNKh+OaAdNTwFoCEdAmk479Q40dnV9lChoBkdAb/gX7cfvF2gHTRgBaAhHQJpOtjiGWUt1fZQoaAZHQHIVbjDKoydoB00IAWgIR0CaTty2x6fKdX2UKGgGR0BvDREKE385aAdNFgFoCEdAmk+lZkkKNXV9lChoBkdAbaK6vq1PWWgHTS4BaAhHQJpP8daMaS91fZQoaAZHQG679Kujh1loB01hAWgIR0CaT/6SDAaedX2UKGgGR0Bulj3wkPc0aAdNLQFoCEdAmlDleOXE63V9lChoBkdAcSbdtl7MPmgHTaQBaAhHQJpR+UTtb9t1fZQoaAZHQG+ctHhCMP1oB00rAWgIR0CaUm2SMcZMdX2UKGgGR0BueowPAfuDaAdNLQFoCEdAmlJ8SCe2/nV9lChoBkdAcvzeb/ffoGgHS/loCEdAmlLS4jKPn3V9lChoBkdAb+cZmZmZmmgHTVIBaAhHQJpUuo1k1/F1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |