Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-3.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
---
|
6 |
+
|
7 |
+
A model for mapping abstract sentence descriptions to sentences that fit the descriptions. Trained on Pubmed sentences. Use ```load_finetuned_model``` to load the query and sentence encoder, and ```encode_batch()``` to encode a sentence with the model.
|
8 |
+
|
9 |
+
```python
|
10 |
+
|
11 |
+
from transformers import AutoTokenizer, AutoModel
|
12 |
+
import torch
|
13 |
+
|
14 |
+
def load_finetuned_model():
|
15 |
+
|
16 |
+
|
17 |
+
sentence_encoder = AutoModel.from_pretrained("ravfogs/abstract-sim-sentence-pubmed")
|
18 |
+
query_encoder = AutoModel.from_pretrained("ravfogs/abstract-sim-query-pubmed")
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained("ravfogs/abstract-sim-sentence-pubmed")
|
20 |
+
|
21 |
+
return tokenizer, query_encoder, sentence_encoder
|
22 |
+
|
23 |
+
|
24 |
+
def encode_batch(model, tokenizer, sentences, device):
|
25 |
+
input_ids = tokenizer(sentences, padding=True, max_length=512, truncation=True, return_tensors="pt",
|
26 |
+
add_special_tokens=True).to(device)
|
27 |
+
features = model(**input_ids)[0]
|
28 |
+
features = torch.sum(features[:,1:,:] * input_ids["attention_mask"][:,1:].unsqueeze(-1), dim=1) / torch.clamp(torch.sum(input_ids["attention_mask"][:,1:], dim=1, keepdims=True), min=1e-9)
|
29 |
+
return features
|
30 |
+
|
31 |
+
```
|