--- license: cc-by-3.0 language: - en --- A model for mapping abstract sentence descriptions to sentences that fit the descriptions. Trained on Pubmed sentences. Use ```load_finetuned_model``` to load the query and sentence encoder, and ```encode_batch()``` to encode a sentence with the model. ```python from transformers import AutoTokenizer, AutoModel import torch def load_finetuned_model(): sentence_encoder = AutoModel.from_pretrained("ravfogs/abstract-sim-sentence-pubmed") query_encoder = AutoModel.from_pretrained("ravfogs/abstract-sim-query-pubmed") tokenizer = AutoTokenizer.from_pretrained("ravfogs/abstract-sim-sentence-pubmed") return tokenizer, query_encoder, sentence_encoder def encode_batch(model, tokenizer, sentences, device): input_ids = tokenizer(sentences, padding=True, max_length=512, truncation=True, return_tensors="pt", add_special_tokens=True).to(device) features = model(**input_ids)[0] features = torch.sum(features[:,1:,:] * input_ids["attention_mask"][:,1:].unsqueeze(-1), dim=1) / torch.clamp(torch.sum(input_ids["attention_mask"][:,1:], dim=1, keepdims=True), min=1e-9) return features ```