retry
Browse files- .gitattributes +1 -0
- LunarLander-test1.zip +3 -0
- LunarLander-test1/_stable_baselines3_version +1 -0
- LunarLander-test1/data +94 -0
- LunarLander-test1/policy.optimizer.pth +3 -0
- LunarLander-test1/policy.pth +3 -0
- LunarLander-test1/pytorch_variables.pth +3 -0
- LunarLander-test1/system_info.txt +7 -0
- README.md +36 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
LunarLander-test1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0f88fdfd12741e68a0cc27bd3425084d33e0fcc04b9a14349055f8cb093fad1c
|
3 |
+
size 144152
|
LunarLander-test1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
LunarLander-test1/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f8b936da5f0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8b936da680>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8b936da710>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8b936da7a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f8b936da830>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f8b936da8c0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8b936da950>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f8b936da9e0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8b936daa70>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8b936dab00>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8b936dab90>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f8b93702150>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1655745613.4027693,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAgIOpPWbsij/g4/I9Ic9gvsMA2T3td3y9AAAAAAAAAADz1ki+PZeMP1GjFD3VUJa+EUycvo/sKz4AAAAAAAAAAM1eRj6Mblc/g8pOvZqoOL5bd8Y8mJ02vgAAAAAAAAAAmpXQvNZhnj6QgYA9l4g7vsGtZ7uGcfq9AAAAAAAAAAAIWhE/b7s0P/2b8rveoBu+46XMu//VDL4AAAAAAAAAALNpy732rGi6e74SOfWoBDZZeIs6W9n8NAAAgD8AAIA/M2M+u2Pbmj/KuoS7vnrXvuX32Dwevps9AAAAAAAAAABTgVI+1zksPlNOhb1zY+6964uKPcpGwTwAAAAAAAAAALbH1z6KzhU/mj4nvbDNHb4oNUs875fDvQAAAAAAAAAAmqFMux8N3rmOpwA6rka+toZg2Lju6hW5AACAPwAAgD+qyOc+iPAPP4eLqTnCaR6+c7wAvWpeND0AAAAAAAAAAPNC3z32KES6VUJeOTsSBTbf7Ka7wuaDuAAAgD8AAIA/mqtPPT2aL7mH8AK9wIz4vA4eY7s+xtq9AAAAAAAAgD8AZck8j9IQuvZ9HjzuxJG2ZUgquz3ui7UAAIA/AACAPxMHAb5fAo0/A1rvPJB4or4kSCu9gfS2PQAAAAAAAAAAYP9YPo9MKz6jMIm9kMzxveLpLTyoHto8AAAAAAAAAACUdJRiLg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gASVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXTXPEfmDXUCUhpRSlIwBbJRN6AOMAXSUR0B3V4TAWSEEdX2UKGgGaAloD0MId0zdlV1zWcCUhpRSlGgVTU8BaBZHQHdYURvm5lR1fZQoaAZoCWgPQwhTsMbZdB1gQJSGlFKUaBVN6ANoFkdAd2QPbwjMV3V9lChoBmgJaA9DCABxV68io0VAlIaUUpRoFUvKaBZHQHdlYsiB5HF1fZQoaAZoCWgPQwi8OzJWmxRfQJSGlFKUaBVN6ANoFkdAd3FcbiqABnV9lChoBmgJaA9DCPAxWHGqhV5AlIaUUpRoFU3oA2gWR0B3dBB9kSVXdX2UKGgGaAloD0MILXsS2JwVTkCUhpRSlGgVTegDaBZHQHeBghbGFSN1fZQoaAZoCWgPQwgf8wGBzvhbQJSGlFKUaBVN6ANoFkdAd4OSWqtHQXV9lChoBmgJaA9DCKUTCaaaZTXAlIaUUpRoFUu7aBZHQHeQPM4cWCV1fZQoaAZoCWgPQwj/rs+c9UtdQJSGlFKUaBVN6ANoFkdAd5C29+PRzHV9lChoBmgJaA9DCIBgjh6/5lBAlIaUUpRoFU3oA2gWR0B35WCCjDbbdX2UKGgGaAloD0MIHVcju9KSF8CUhpRSlGgVTTMBaBZHQHfnBK+SKWN1fZQoaAZoCWgPQwjT3AphNTtdQJSGlFKUaBVN6ANoFkdAd++K8L8aXXV9lChoBmgJaA9DCOyi6IGP7UBAlIaUUpRoFU0LAWgWR0B4ByrlvIfbdX2UKGgGaAloD0MI4jycwHSCX0CUhpRSlGgVTegDaBZHQHgIstK7I1d1fZQoaAZoCWgPQwiXb31Yb7NjQJSGlFKUaBVN6ANoFkdAeDpGKAJ9iXV9lChoBmgJaA9DCHiWICOg9jHAlIaUUpRoFU0yAWgWR0B4XRbPhQ3xdX2UKGgGaAloD0MI6NhBJa7hYECUhpRSlGgVTegDaBZHQHhwp3C9AX51fZQoaAZoCWgPQwjIC+nwELpJQJSGlFKUaBVN6ANoFkdAeJ3O+qR2bHV9lChoBmgJaA9DCCfBG9KoD1lAlIaUUpRoFU3oA2gWR0B4pmIWP91mdX2UKGgGaAloD0MIC+4HPDA3X0CUhpRSlGgVTegDaBZHQHinIl2NedF1fZQoaAZoCWgPQwgXZTbIpBxgQJSGlFKUaBVN6ANoFkdAeLO9ic5Ke3V9lChoBmgJaA9DCF00ZDxKa1VAlIaUUpRoFU3oA2gWR0B4v7eUILPVdX2UKGgGaAloD0MIXI5XIPoraUCUhpRSlGgVTeIBaBZHQHjCS7f51vF1fZQoaAZoCWgPQwhihzHp77BXQJSGlFKUaBVN6ANoFkdAeMKFBppN9HV9lChoBmgJaA9DCOcb0T3r6F9AlIaUUpRoFU3oA2gWR0B40TnxJ/XodX2UKGgGaAloD0MIUP9Z8+NNYkCUhpRSlGgVTegDaBZHQHjeUMgEEDB1fZQoaAZoCWgPQwgu51Jc1b1gQJSGlFKUaBVN6ANoFkdAeN7UONHYpXV9lChoBmgJaA9DCCtrm+JxmWFAlIaUUpRoFU3oA2gWR0B46jM4cWCVdX2UKGgGaAloD0MIaOif4GJLXECUhpRSlGgVTegDaBZHQHjr0RODaoN1fZQoaAZoCWgPQwj6sx8potthQJSGlFKUaBVN6ANoFkdAeT3YpUgjhXV9lChoBmgJaA9DCLZHb7iP5EJAlIaUUpRoFU05AWgWR0B5U28274BWdX2UKGgGaAloD0MIdAexM4VkXUCUhpRSlGgVTegDaBZHQHlYb+o99tx1fZQoaAZoCWgPQwjPE8/ZAhxMQJSGlFKUaBVNFwFoFkdAeWoQ/oq0+nV9lChoBmgJaA9DCK6ek943AFxAlIaUUpRoFU3oA2gWR0B5rY9eQdS3dX2UKGgGaAloD0MI7l7uk6NGW0CUhpRSlGgVTegDaBZHQHnCej2zv7Z1fZQoaAZoCWgPQwguPC8VG+VYQJSGlFKUaBVN6ANoFkdAefS8fms/6nV9lChoBmgJaA9DCKJe8GnOrWBAlIaUUpRoFU3oA2gWR0B5/nP1L8JldX2UKGgGaAloD0MI+ptQiIAdXkCUhpRSlGgVTegDaBZHQHn/UfxMFll1fZQoaAZoCWgPQwiwA+eMqMhgQJSGlFKUaBVN6ANoFkdAeg0Fpfx+a3V9lChoBmgJaA9DCKQa9ntiZl5AlIaUUpRoFU3oA2gWR0B6GWkN4JNTdX2UKGgGaAloD0MIfXbAdcV+WkCUhpRSlGgVTegDaBZHQHob7+tKZlZ1fZQoaAZoCWgPQwhPAwZJnwtbQJSGlFKUaBVN6ANoFkdAeixz/6wdKnV9lChoBmgJaA9DCL6iW69pIWNAlIaUUpRoFU0RA2gWR0B6OHQmeDnOdX2UKGgGaAloD0MIWd5VD5iDXkCUhpRSlGgVTegDaBZHQHo6gNb1RLt1fZQoaAZoCWgPQwiifhe25sNgQJSGlFKUaBVN6ANoFkdAekYVuaWonHV9lChoBmgJaA9DCPhPN1Dg+1ZAlIaUUpRoFU3oA2gWR0B6R63AmAskdX2UKGgGaAloD0MII2jMJOqPQUCUhpRSlGgVTQABaBZHQHpKVvqC6H11fZQoaAZoCWgPQwhBSuza3rNkQJSGlFKUaBVN6ANoFkdAepaTgVGkOHV9lChoBmgJaA9DCPkUAOOZJ2FAlIaUUpRoFU3oA2gWR0B6qhQ53kgfdX2UKGgGaAloD0MIacnjaXljYECUhpRSlGgVTegDaBZHQHq+Zbpu/Dd1fZQoaAZoCWgPQwgwgzEiUWg4wJSGlFKUaBVL8mgWR0B6w7Roh6jWdX2UKGgGaAloD0MI7ISX4NRQYUCUhpRSlGgVTegDaBZHQHr36SgXdj51fZQoaAZoCWgPQwjqXif15cBjQJSGlFKUaBVN6ANoFkdAewuL6UJOWXV9lChoBmgJaA9DCAhzu5f7DV5AlIaUUpRoFU3oA2gWR0B7PDR8c+7ldX2UKGgGaAloD0MI+IvZklWIV0CUhpRSlGgVTegDaBZHQHtFhO58Sf11fZQoaAZoCWgPQwjNBS6PNd9cQJSGlFKUaBVN6ANoFkdAe0ZoRZlnRXV9lChoBmgJaA9DCIviVdY2E15AlIaUUpRoFU3oA2gWR0B7YwnVoYeldX2UKGgGaAloD0MIcjJxqyAFY0CUhpRSlGgVTegDaBZHQHtmEcsDnvF1fZQoaAZoCWgPQwgxl1Rtt5BgQJSGlFKUaBVN6ANoFkdAe3kTLW7OFHV9lChoBmgJaA9DCFhTWRR2Yl5AlIaUUpRoFU3oA2gWR0B7hr4N7SiNdX2UKGgGaAloD0MICryTTw+TYECUhpRSlGgVTegDaBZHQHuJHq7iADt1fZQoaAZoCWgPQwgn3ZbIBfJhQJSGlFKUaBVN6ANoFkdAe5WnfVI7NnV9lChoBmgJaA9DCPim6bMD9V5AlIaUUpRoFU3oA2gWR0B7msQiA2AHdX2UKGgGaAloD0MISPje36D4UkCUhpRSlGgVTegDaBZHQHuiZyhi9Zl1fZQoaAZoCWgPQwiKWS+GcixdQJSGlFKUaBVN6ANoFkdAfAEr5qM3qHV9lChoBmgJaA9DCJZ31QPmf1xAlIaUUpRoFU3oA2gWR0B8F7nFHavidX2UKGgGaAloD0MIQSrFjsYZX0CUhpRSlGgVTegDaBZHQHweABo24ut1fZQoaAZoCWgPQwhfuHNhpHFaQJSGlFKUaBVN6ANoFkdAfFoIjnmq53V9lChoBmgJaA9DCELSp1X02GBAlIaUUpRoFU3oA2gWR0B8b9Qfp2U0dX2UKGgGaAloD0MIJov7j0z9W0CUhpRSlGgVTegDaBZHQHyiezdDYyx1fZQoaAZoCWgPQwgn2H+dm6NcQJSGlFKUaBVN6ANoFkdAfKxZpBX0XnV9lChoBmgJaA9DCH09X7NcK1tAlIaUUpRoFU3oA2gWR0B8rTfHggoxdX2UKGgGaAloD0MIz0iERrB6W0CUhpRSlGgVTegDaBZHQHzJ0IcBEKF1fZQoaAZoCWgPQwgO9FDbhkxcQJSGlFKUaBVN6ANoFkdAfMzDst03fnV9lChoBmgJaA9DCPkVa7jIl05AlIaUUpRoFU3oA2gWR0B84DlxOtW/dX2UKGgGaAloD0MIomEx6lpCXkCUhpRSlGgVTegDaBZHQHztt/FzdUN1fZQoaAZoCWgPQwjcKR2s/9BTQJSGlFKUaBVN6ANoFkdAfO/8s+V1OnV9lChoBmgJaA9DCNwr81ZdzFhAlIaUUpRoFU3oA2gWR0B8/McKgIyCdX2UKGgGaAloD0MImODUB5KhX0CUhpRSlGgVTegDaBZHQH0BoqLCN0h1fZQoaAZoCWgPQwifc7frpSnXP5SGlFKUaBVNSgFoFkdAfQgJ0GNaQnV9lChoBmgJaA9DCM3lBkOdtGNAlIaUUpRoFU3oA2gWR0B9CBHOKO1fdX2UKGgGaAloD0MIuTR+4RUdbECUhpRSlGgVTXYBaBZHQH1YtxAB1cN1fZQoaAZoCWgPQwjql4i3zgNgQJSGlFKUaBVN6ANoFkdAfWPwvQF9r3V9lChoBmgJaA9DCOYg6GhVsFJAlIaUUpRoFU3oA2gWR0B9eBfCyhSMdX2UKGgGaAloD0MI+IkD6PfnUkCUhpRSlGgVTegDaBZHQH1+EyckMTh1fZQoaAZoCWgPQwhUU5J1uJhgQJSGlFKUaBVN6ANoFkdAfbeY02tMf3V9lChoBmgJaA9DCFThz/Bm8llAlIaUUpRoFU3oA2gWR0B9zVybQTmGdX2UKGgGaAloD0MIKv9aXrlmXkCUhpRSlGgVTegDaBZHQH4DIISlFc91fZQoaAZoCWgPQwjULNDukBpeQJSGlFKUaBVN6ANoFkdAfi8CCSRr8HV9lChoBmgJaA9DCN20Gach21pAlIaUUpRoFU3oA2gWR0B+MlhfBvaUdX2UKGgGaAloD0MIomEx6lroXUCUhpRSlGgVTegDaBZHQH5Hs3l0YCR1fZQoaAZoCWgPQwgLCoMyjVZWQJSGlFKUaBVN6ANoFkdAflahvR7Z4HV9lChoBmgJaA9DCDLH8q56EV5AlIaUUpRoFU3oA2gWR0B+WU8yN4qxdX2UKGgGaAloD0MIRluVRPbtaECUhpRSlGgVTfgCaBZHQH5jeAI6bON1fZQoaAZoCWgPQwiTVRFuMjdUQJSGlFKUaBVN6ANoFkdAfmeRg7YChnV9lChoBmgJaA9DCBwnhXmP815AlIaUUpRoFU3oA2gWR0B+bMjY7JXAdX2UKGgGaAloD0MI0PHR4oyzXUCUhpRSlGgVTegDaBZHQH5yh3/xUed1fZQoaAZoCWgPQwivYBvxZORbQJSGlFKUaBVN6ANoFkdAfnKR0U47zXV9lChoBmgJaA9DCOP74lKVj1ZAlIaUUpRoFU3oA2gWR0B+evY150KadWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
LunarLander-test1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:079c27ae318adbc8624306c107f042ba140376ead7259bf20f2e0b3e55e30023
|
3 |
+
size 84829
|
LunarLander-test1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0374a155a4fa4b401465c641e5a75a465683bed42840c748510db3b64bccedd0
|
3 |
+
size 43201
|
LunarLander-test1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
LunarLander-test1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 77.47 +/- 50.96
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8b936da5f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8b936da680>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8b936da710>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8b936da7a0>", "_build": "<function ActorCriticPolicy._build at 0x7f8b936da830>", "forward": "<function ActorCriticPolicy.forward at 0x7f8b936da8c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8b936da950>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8b936da9e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8b936daa70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8b936dab00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8b936dab90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8b93702150>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1655745613.4027693, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAgIOpPWbsij/g4/I9Ic9gvsMA2T3td3y9AAAAAAAAAADz1ki+PZeMP1GjFD3VUJa+EUycvo/sKz4AAAAAAAAAAM1eRj6Mblc/g8pOvZqoOL5bd8Y8mJ02vgAAAAAAAAAAmpXQvNZhnj6QgYA9l4g7vsGtZ7uGcfq9AAAAAAAAAAAIWhE/b7s0P/2b8rveoBu+46XMu//VDL4AAAAAAAAAALNpy732rGi6e74SOfWoBDZZeIs6W9n8NAAAgD8AAIA/M2M+u2Pbmj/KuoS7vnrXvuX32Dwevps9AAAAAAAAAABTgVI+1zksPlNOhb1zY+6964uKPcpGwTwAAAAAAAAAALbH1z6KzhU/mj4nvbDNHb4oNUs875fDvQAAAAAAAAAAmqFMux8N3rmOpwA6rka+toZg2Lju6hW5AACAPwAAgD+qyOc+iPAPP4eLqTnCaR6+c7wAvWpeND0AAAAAAAAAAPNC3z32KES6VUJeOTsSBTbf7Ka7wuaDuAAAgD8AAIA/mqtPPT2aL7mH8AK9wIz4vA4eY7s+xtq9AAAAAAAAgD8AZck8j9IQuvZ9HjzuxJG2ZUgquz3ui7UAAIA/AACAPxMHAb5fAo0/A1rvPJB4or4kSCu9gfS2PQAAAAAAAAAAYP9YPo9MKz6jMIm9kMzxveLpLTyoHto8AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXTXPEfmDXUCUhpRSlIwBbJRN6AOMAXSUR0B3V4TAWSEEdX2UKGgGaAloD0MId0zdlV1zWcCUhpRSlGgVTU8BaBZHQHdYURvm5lR1fZQoaAZoCWgPQwhTsMbZdB1gQJSGlFKUaBVN6ANoFkdAd2QPbwjMV3V9lChoBmgJaA9DCABxV68io0VAlIaUUpRoFUvKaBZHQHdlYsiB5HF1fZQoaAZoCWgPQwi8OzJWmxRfQJSGlFKUaBVN6ANoFkdAd3FcbiqABnV9lChoBmgJaA9DCPAxWHGqhV5AlIaUUpRoFU3oA2gWR0B3dBB9kSVXdX2UKGgGaAloD0MILXsS2JwVTkCUhpRSlGgVTegDaBZHQHeBghbGFSN1fZQoaAZoCWgPQwgf8wGBzvhbQJSGlFKUaBVN6ANoFkdAd4OSWqtHQXV9lChoBmgJaA9DCKUTCaaaZTXAlIaUUpRoFUu7aBZHQHeQPM4cWCV1fZQoaAZoCWgPQwj/rs+c9UtdQJSGlFKUaBVN6ANoFkdAd5C29+PRzHV9lChoBmgJaA9DCIBgjh6/5lBAlIaUUpRoFU3oA2gWR0B35WCCjDbbdX2UKGgGaAloD0MIHVcju9KSF8CUhpRSlGgVTTMBaBZHQHfnBK+SKWN1fZQoaAZoCWgPQwjT3AphNTtdQJSGlFKUaBVN6ANoFkdAd++K8L8aXXV9lChoBmgJaA9DCOyi6IGP7UBAlIaUUpRoFU0LAWgWR0B4ByrlvIfbdX2UKGgGaAloD0MI4jycwHSCX0CUhpRSlGgVTegDaBZHQHgIstK7I1d1fZQoaAZoCWgPQwiXb31Yb7NjQJSGlFKUaBVN6ANoFkdAeDpGKAJ9iXV9lChoBmgJaA9DCHiWICOg9jHAlIaUUpRoFU0yAWgWR0B4XRbPhQ3xdX2UKGgGaAloD0MI6NhBJa7hYECUhpRSlGgVTegDaBZHQHhwp3C9AX51fZQoaAZoCWgPQwjIC+nwELpJQJSGlFKUaBVN6ANoFkdAeJ3O+qR2bHV9lChoBmgJaA9DCCfBG9KoD1lAlIaUUpRoFU3oA2gWR0B4pmIWP91mdX2UKGgGaAloD0MIC+4HPDA3X0CUhpRSlGgVTegDaBZHQHinIl2NedF1fZQoaAZoCWgPQwgXZTbIpBxgQJSGlFKUaBVN6ANoFkdAeLO9ic5Ke3V9lChoBmgJaA9DCF00ZDxKa1VAlIaUUpRoFU3oA2gWR0B4v7eUILPVdX2UKGgGaAloD0MIXI5XIPoraUCUhpRSlGgVTeIBaBZHQHjCS7f51vF1fZQoaAZoCWgPQwhihzHp77BXQJSGlFKUaBVN6ANoFkdAeMKFBppN9HV9lChoBmgJaA9DCOcb0T3r6F9AlIaUUpRoFU3oA2gWR0B40TnxJ/XodX2UKGgGaAloD0MIUP9Z8+NNYkCUhpRSlGgVTegDaBZHQHjeUMgEEDB1fZQoaAZoCWgPQwgu51Jc1b1gQJSGlFKUaBVN6ANoFkdAeN7UONHYpXV9lChoBmgJaA9DCCtrm+JxmWFAlIaUUpRoFU3oA2gWR0B46jM4cWCVdX2UKGgGaAloD0MIaOif4GJLXECUhpRSlGgVTegDaBZHQHjr0RODaoN1fZQoaAZoCWgPQwj6sx8potthQJSGlFKUaBVN6ANoFkdAeT3YpUgjhXV9lChoBmgJaA9DCLZHb7iP5EJAlIaUUpRoFU05AWgWR0B5U28274BWdX2UKGgGaAloD0MIdAexM4VkXUCUhpRSlGgVTegDaBZHQHlYb+o99tx1fZQoaAZoCWgPQwjPE8/ZAhxMQJSGlFKUaBVNFwFoFkdAeWoQ/oq0+nV9lChoBmgJaA9DCK6ek943AFxAlIaUUpRoFU3oA2gWR0B5rY9eQdS3dX2UKGgGaAloD0MI7l7uk6NGW0CUhpRSlGgVTegDaBZHQHnCej2zv7Z1fZQoaAZoCWgPQwguPC8VG+VYQJSGlFKUaBVN6ANoFkdAefS8fms/6nV9lChoBmgJaA9DCKJe8GnOrWBAlIaUUpRoFU3oA2gWR0B5/nP1L8JldX2UKGgGaAloD0MI+ptQiIAdXkCUhpRSlGgVTegDaBZHQHn/UfxMFll1fZQoaAZoCWgPQwiwA+eMqMhgQJSGlFKUaBVN6ANoFkdAeg0Fpfx+a3V9lChoBmgJaA9DCKQa9ntiZl5AlIaUUpRoFU3oA2gWR0B6GWkN4JNTdX2UKGgGaAloD0MIfXbAdcV+WkCUhpRSlGgVTegDaBZHQHob7+tKZlZ1fZQoaAZoCWgPQwhPAwZJnwtbQJSGlFKUaBVN6ANoFkdAeixz/6wdKnV9lChoBmgJaA9DCL6iW69pIWNAlIaUUpRoFU0RA2gWR0B6OHQmeDnOdX2UKGgGaAloD0MIWd5VD5iDXkCUhpRSlGgVTegDaBZHQHo6gNb1RLt1fZQoaAZoCWgPQwiifhe25sNgQJSGlFKUaBVN6ANoFkdAekYVuaWonHV9lChoBmgJaA9DCPhPN1Dg+1ZAlIaUUpRoFU3oA2gWR0B6R63AmAskdX2UKGgGaAloD0MII2jMJOqPQUCUhpRSlGgVTQABaBZHQHpKVvqC6H11fZQoaAZoCWgPQwhBSuza3rNkQJSGlFKUaBVN6ANoFkdAepaTgVGkOHV9lChoBmgJaA9DCPkUAOOZJ2FAlIaUUpRoFU3oA2gWR0B6qhQ53kgfdX2UKGgGaAloD0MIacnjaXljYECUhpRSlGgVTegDaBZHQHq+Zbpu/Dd1fZQoaAZoCWgPQwgwgzEiUWg4wJSGlFKUaBVL8mgWR0B6w7Roh6jWdX2UKGgGaAloD0MI7ISX4NRQYUCUhpRSlGgVTegDaBZHQHr36SgXdj51fZQoaAZoCWgPQwjqXif15cBjQJSGlFKUaBVN6ANoFkdAewuL6UJOWXV9lChoBmgJaA9DCAhzu5f7DV5AlIaUUpRoFU3oA2gWR0B7PDR8c+7ldX2UKGgGaAloD0MI+IvZklWIV0CUhpRSlGgVTegDaBZHQHtFhO58Sf11fZQoaAZoCWgPQwjNBS6PNd9cQJSGlFKUaBVN6ANoFkdAe0ZoRZlnRXV9lChoBmgJaA9DCIviVdY2E15AlIaUUpRoFU3oA2gWR0B7YwnVoYeldX2UKGgGaAloD0MIcjJxqyAFY0CUhpRSlGgVTegDaBZHQHtmEcsDnvF1fZQoaAZoCWgPQwgxl1Rtt5BgQJSGlFKUaBVN6ANoFkdAe3kTLW7OFHV9lChoBmgJaA9DCFhTWRR2Yl5AlIaUUpRoFU3oA2gWR0B7hr4N7SiNdX2UKGgGaAloD0MICryTTw+TYECUhpRSlGgVTegDaBZHQHuJHq7iADt1fZQoaAZoCWgPQwgn3ZbIBfJhQJSGlFKUaBVN6ANoFkdAe5WnfVI7NnV9lChoBmgJaA9DCPim6bMD9V5AlIaUUpRoFU3oA2gWR0B7msQiA2AHdX2UKGgGaAloD0MISPje36D4UkCUhpRSlGgVTegDaBZHQHuiZyhi9Zl1fZQoaAZoCWgPQwiKWS+GcixdQJSGlFKUaBVN6ANoFkdAfAEr5qM3qHV9lChoBmgJaA9DCJZ31QPmf1xAlIaUUpRoFU3oA2gWR0B8F7nFHavidX2UKGgGaAloD0MIQSrFjsYZX0CUhpRSlGgVTegDaBZHQHweABo24ut1fZQoaAZoCWgPQwhfuHNhpHFaQJSGlFKUaBVN6ANoFkdAfFoIjnmq53V9lChoBmgJaA9DCELSp1X02GBAlIaUUpRoFU3oA2gWR0B8b9Qfp2U0dX2UKGgGaAloD0MIJov7j0z9W0CUhpRSlGgVTegDaBZHQHyiezdDYyx1fZQoaAZoCWgPQwgn2H+dm6NcQJSGlFKUaBVN6ANoFkdAfKxZpBX0XnV9lChoBmgJaA9DCH09X7NcK1tAlIaUUpRoFU3oA2gWR0B8rTfHggoxdX2UKGgGaAloD0MIz0iERrB6W0CUhpRSlGgVTegDaBZHQHzJ0IcBEKF1fZQoaAZoCWgPQwgO9FDbhkxcQJSGlFKUaBVN6ANoFkdAfMzDst03fnV9lChoBmgJaA9DCPkVa7jIl05AlIaUUpRoFU3oA2gWR0B84DlxOtW/dX2UKGgGaAloD0MIomEx6lpCXkCUhpRSlGgVTegDaBZHQHztt/FzdUN1fZQoaAZoCWgPQwjcKR2s/9BTQJSGlFKUaBVN6ANoFkdAfO/8s+V1OnV9lChoBmgJaA9DCNwr81ZdzFhAlIaUUpRoFU3oA2gWR0B8/McKgIyCdX2UKGgGaAloD0MImODUB5KhX0CUhpRSlGgVTegDaBZHQH0BoqLCN0h1fZQoaAZoCWgPQwifc7frpSnXP5SGlFKUaBVNSgFoFkdAfQgJ0GNaQnV9lChoBmgJaA9DCM3lBkOdtGNAlIaUUpRoFU3oA2gWR0B9CBHOKO1fdX2UKGgGaAloD0MIuTR+4RUdbECUhpRSlGgVTXYBaBZHQH1YtxAB1cN1fZQoaAZoCWgPQwjql4i3zgNgQJSGlFKUaBVN6ANoFkdAfWPwvQF9r3V9lChoBmgJaA9DCOYg6GhVsFJAlIaUUpRoFU3oA2gWR0B9eBfCyhSMdX2UKGgGaAloD0MI+IkD6PfnUkCUhpRSlGgVTegDaBZHQH1+EyckMTh1fZQoaAZoCWgPQwhUU5J1uJhgQJSGlFKUaBVN6ANoFkdAfbeY02tMf3V9lChoBmgJaA9DCFThz/Bm8llAlIaUUpRoFU3oA2gWR0B9zVybQTmGdX2UKGgGaAloD0MIKv9aXrlmXkCUhpRSlGgVTegDaBZHQH4DIISlFc91fZQoaAZoCWgPQwjULNDukBpeQJSGlFKUaBVN6ANoFkdAfi8CCSRr8HV9lChoBmgJaA9DCN20Gach21pAlIaUUpRoFU3oA2gWR0B+MlhfBvaUdX2UKGgGaAloD0MIomEx6lroXUCUhpRSlGgVTegDaBZHQH5Hs3l0YCR1fZQoaAZoCWgPQwgLCoMyjVZWQJSGlFKUaBVN6ANoFkdAflahvR7Z4HV9lChoBmgJaA9DCDLH8q56EV5AlIaUUpRoFU3oA2gWR0B+WU8yN4qxdX2UKGgGaAloD0MIRluVRPbtaECUhpRSlGgVTfgCaBZHQH5jeAI6bON1fZQoaAZoCWgPQwiTVRFuMjdUQJSGlFKUaBVN6ANoFkdAfmeRg7YChnV9lChoBmgJaA9DCBwnhXmP815AlIaUUpRoFU3oA2gWR0B+bMjY7JXAdX2UKGgGaAloD0MI0PHR4oyzXUCUhpRSlGgVTegDaBZHQH5yh3/xUed1fZQoaAZoCWgPQwivYBvxZORbQJSGlFKUaBVN6ANoFkdAfnKR0U47zXV9lChoBmgJaA9DCOP74lKVj1ZAlIaUUpRoFU3oA2gWR0B+evY150KadWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ef3b42c42f6cf2f36f9415ac6a1feaf6251b4d001d96b2ee4f2c816dff41898
|
3 |
+
size 252166
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 77.47425386065443, "std_reward": 50.964593290490875, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-20T17:29:00.412293"}
|