bjelkenhed
commited on
Commit
·
acba92a
1
Parent(s):
a52ff7b
run scripts
Browse files- run.sh +2 -2
- run_speech_recognition_seq2seq_streaming.py +3 -2
run.sh
CHANGED
@@ -8,7 +8,7 @@ python run_speech_recognition_seq2seq_streaming.py \
|
|
8 |
--train_split_name="train" \
|
9 |
--eval_split_name="test" \
|
10 |
--model_index_name="Whisper Large Swedish" \
|
11 |
-
--max_steps="
|
12 |
--output_dir="./" \
|
13 |
--per_device_train_batch_size="8" \
|
14 |
--per_device_eval_batch_size="4" \
|
@@ -17,7 +17,7 @@ python run_speech_recognition_seq2seq_streaming.py \
|
|
17 |
--learning_rate="1e-5" \
|
18 |
--warmup_steps="500" \
|
19 |
--evaluation_strategy="steps" \
|
20 |
-
--eval_steps="
|
21 |
--save_strategy="steps" \
|
22 |
--save_steps="1000" \
|
23 |
--generation_max_length="225" \
|
|
|
8 |
--train_split_name="train" \
|
9 |
--eval_split_name="test" \
|
10 |
--model_index_name="Whisper Large Swedish" \
|
11 |
+
--max_steps="5000" \
|
12 |
--output_dir="./" \
|
13 |
--per_device_train_batch_size="8" \
|
14 |
--per_device_eval_batch_size="4" \
|
|
|
17 |
--learning_rate="1e-5" \
|
18 |
--warmup_steps="500" \
|
19 |
--evaluation_strategy="steps" \
|
20 |
+
--eval_steps="1000" \
|
21 |
--save_strategy="steps" \
|
22 |
--save_steps="1000" \
|
23 |
--generation_max_length="225" \
|
run_speech_recognition_seq2seq_streaming.py
CHANGED
@@ -127,7 +127,6 @@ class DataTrainingArguments:
|
|
127 |
"""
|
128 |
Arguments pertaining to what data we are going to input our model for training and eval.
|
129 |
"""
|
130 |
-
|
131 |
trainset_name: str = field(
|
132 |
default=None, metadata={"help": "The name of the trainset to use (via the datasets library)."}
|
133 |
)
|
@@ -136,7 +135,6 @@ class DataTrainingArguments:
|
|
136 |
default=None, metadata={"help": "The configuration name of the trainset to use (via the datasets library)."}
|
137 |
)
|
138 |
|
139 |
-
|
140 |
dataset_name: str = field(
|
141 |
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
|
142 |
)
|
@@ -403,6 +401,9 @@ def main():
|
|
403 |
|
404 |
config.update({"forced_decoder_ids": model_args.forced_decoder_ids, "suppress_tokens": model_args.suppress_tokens})
|
405 |
|
|
|
|
|
|
|
406 |
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
407 |
model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path,
|
408 |
cache_dir=model_args.cache_dir,
|
|
|
127 |
"""
|
128 |
Arguments pertaining to what data we are going to input our model for training and eval.
|
129 |
"""
|
|
|
130 |
trainset_name: str = field(
|
131 |
default=None, metadata={"help": "The name of the trainset to use (via the datasets library)."}
|
132 |
)
|
|
|
135 |
default=None, metadata={"help": "The configuration name of the trainset to use (via the datasets library)."}
|
136 |
)
|
137 |
|
|
|
138 |
dataset_name: str = field(
|
139 |
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
|
140 |
)
|
|
|
401 |
|
402 |
config.update({"forced_decoder_ids": model_args.forced_decoder_ids, "suppress_tokens": model_args.suppress_tokens})
|
403 |
|
404 |
+
if training_args.gradient_checkpointing:
|
405 |
+
config.update({"use_cache": False})
|
406 |
+
|
407 |
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
408 |
model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path,
|
409 |
cache_dir=model_args.cache_dir,
|