File size: 14,318 Bytes
269d657 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c0e571a8a60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c0e571a8af0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c0e571a8b80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c0e571a8c10>", "_build": "<function ActorCriticPolicy._build at 0x7c0e571a8ca0>", "forward": "<function ActorCriticPolicy.forward at 0x7c0e571a8d30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c0e571a8dc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c0e571a8e50>", "_predict": "<function ActorCriticPolicy._predict at 0x7c0e571a8ee0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c0e571a8f70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c0e571a9000>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c0e571a9090>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c0e571b67c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690467813208047314, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAextz8iT2a/tg0kPycwoj6aKxi8MgRFP9SOUT/QrfS8GDgKwDCqPb+eihm/+AAmwEJ57z/5Q0m+UTMtwF2SAD/tOJE+Y7BdPkZg4byIXW8+hi7mvt/pj7+q6v4+k7suPsaOaL81swo/JaZRwFrFKT/8tX4/ppLKP37pCcDsRUi+PJL1vp4Ulj4lVIS+QKE5Pgjmhr6HUixAv5IHQJaMFj5pkMw/PG+Av4IFrL6aavM/c76bv7cmu7/ii9W+248zP/+Adr4Kttw/7gFlP06EAj/Gjmi/NbMKPyWmUcBaxSk/9K+UP1BCTz/imoK9ExoPvwbxZ77ScoQ9TpnZvpdeoz9KRhO/OV6KvptLvj6WeOA+RIJoPyhVFz+t8/q/uV/APdjaqT2lM6k/SIgFP5Pywz/rxpK+Oyu2vWg0iD7hMxq/FOeMPzWzCj8lplHAWsUpPzRc1z7+g4I+6+34PiH8qr+6Ce+/pe/dPurWkj5KzHc/9GyKP7HSEr4axE8/Rjadvpq9mT+nnPS/IJE5P2n0IEDl97o/3wpRv0u01L5qKka/x8QZvw8ppD9KL2W/HE1yvhTnjD83QOy/oEycPlcDwb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABx1as1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWXLavAAAAAB7xvq/AAAAAEH81T0AAAAAem7hPwAAAADEHas7AAAAAD2R7z8AAAAACHOrPQAAAAC+5eG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2pZ1tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCD71z0AAAAA9wPavwAAAAAhhwi+AAAAAJXt/j8AAAAAxjusPAAAAACGGuQ/AAAAAIh0TL0AAAAAiKzavwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPDkBbcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBDrNE9AAAAADpB5b8AAAAA1VTxvQAAAAAD4PI/AAAAAHsLjr0AAAAADJv4PwAAAAB4MXI9AAAAACio6b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUvBg1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAiGRSPQAAAADM7ea/AAAAAGBF6r0AAAAAhFL0PwAAAAD0jvw9AAAAAFJ34D8AAAAAuAWNvQAAAACObOy/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJQv3jNpudiMAWyUTegDjAF0lEdArlwGHpKSPnV9lChoBkdAhEc82Jiy6mgHTegDaAhHQK5fLOsT37F1fZQoaAZHQJIFJGLDQ7doB03oA2gIR0CuYJ0ZWJaadX2UKGgGR0CXeW5jYqXoaAdN6ANoCEdArmVkjgQ6IXV9lChoBkdAmPw/8IiTuGgHTegDaAhHQK5r+32EkB11fZQoaAZHQJTOotmL9/BoB03oA2gIR0CubmlMqSX/dX2UKGgGR0CWwDvysjmkaAdN6ANoCEdArm9dUp/gBXV9lChoBkdAkxLAmVqveWgHTegDaAhHQK5ybxH5Jsh1fZQoaAZHQJQ/aAhB7eFoB03oA2gIR0CueNXwb2lEdX2UKGgGR0CV07j/uLJkaAdN6ANoCEdArnx+3rleW3V9lChoBkdAkssjiCJ40WgHTegDaAhHQK5+Eaef7Jp1fZQoaAZHQJdMUvN/vv1oB03oA2gIR0CughiQT238dX2UKGgGR0CXhm5wwTM8aAdN6ANoCEdArohOHtWuHXV9lChoBkdAlq0O36Q/5mgHTegDaAhHQK6KtEETxoZ1fZQoaAZHQJXvOy+pOvdoB03oA2gIR0Cui62FWXC1dX2UKGgGR0CXok4W1twaaAdN6ANoCEdAro7MoOQQtnV9lChoBkdAixgAoXsPa2gHTegDaAhHQK6VcETxoZh1fZQoaAZHQHux8hHLA59oB03oA2gIR0CumRAQg9vCdX2UKGgGR0CJOqoP07KaaAdN6ANoCEdArpqh37k4m3V9lChoBkdAk+78Vk+X7mgHTegDaAhHQK6eS4pc5bR1fZQoaAZHQJYvIGW2PT5oB03oA2gIR0CupLaP8yeqdX2UKGgGR0CUEyknCwbEaAdN6ANoCEdArqcgFA3T/nV9lChoBkdAk9JuK8+Ro2gHTegDaAhHQK6oErMkhRt1fZQoaAZHQJi+aro4dZJoB03oA2gIR0Cuqz1zhgmadX2UKGgGR0CQkKZNwiqyaAdN6ANoCEdArrKYJRfnfXV9lChoBkdAk/JNRiw0O2gHTegDaAhHQK62UInBtUJ1fZQoaAZHQIg1kuanaWZoB03oA2gIR0Cut9uerdWRdX2UKGgGR0COffIUahpQaAdN6ANoCEdArrryI+GGmHV9lChoBkdAknq9dqtYCGgHTegDaAhHQK7BQxeLNwB1fZQoaAZHQJUeuX/o7mxoB03oA2gIR0Cuw59fb9IgdX2UKGgGR0CSSvJ4SpR5aAdN6ANoCEdArsSTMs6JZXV9lChoBkdAl0hjS5RTCWgHTegDaAhHQK7Hmc/dIoV1fZQoaAZHQJUywyZa3ZxoB03oA2gIR0Cuzv36hxo7dX2UKGgGR0CVSdxJ/XoUaAdN6ANoCEdArtLEWCVbA3V9lChoBkdAlP2BgZ0jkmgHTegDaAhHQK7T7U6PsAx1fZQoaAZHQJaBtvES/TNoB03oA2gIR0Cu1wQe/5+IdX2UKGgGR0CTiE8yN4qxaAdN6ANoCEdArt1TaPCEYnV9lChoBkdAlW/ib6P8ymgHTegDaAhHQK7fpjhDPWx1fZQoaAZHQH1FWVNYbKloB03oA2gIR0Cu4LWIGhVVdX2UKGgGR0CS42uxbB42aAdN6ANoCEdAruPv/xUedXV9lChoBkdAlemCV8kUsWgHTegDaAhHQK7sFDx9XtB1fZQoaAZHQJhoSGGmDUVoB03oA2gIR0Cu757T+ee4dX2UKGgGR0CUs3fa6BiDaAdN6ANoCEdArvCWTNdJKHV9lChoBkdAkpc553Tuv2gHTegDaAhHQK7zoycCo0h1fZQoaAZHQJIWtOpKjBVoB03oA2gIR0Cu+fuLBKtgdX2UKGgGR0CW9Pq+ajN7aAdN6ANoCEdArvxoOWjXWnV9lChoBkdAgA8ho/Rmb2gHTegDaAhHQK79Wd8Rcu91fZQoaAZHQJWQi3Td+G5oB03oA2gIR0CvAGRZlnRLdX2UKGgGR0CQ/OzHS4OMaAdN6ANoCEdArwjDJCBwuXV9lChoBkdAlOISYCyQgmgHTegDaAhHQK8L46QvHtF1fZQoaAZHQJIrH1yvLYBoB03oA2gIR0CvDNqUeMhpdX2UKGgGR0CSt8yE+PilaAdN6ANoCEdArw/zgVGkOHV9lChoBkdAflBfdyksSWgHTYcCaAhHQK8VGovSMLp1fZQoaAZHQJLQq9OARTVoB03oA2gIR0CvFkoqkM1CdX2UKGgGR0CTkkGxD9fkaAdN6ANoCEdArxir/jsD4nV9lChoBkdAlOEmWQfZEmgHTegDaAhHQK8c0kxh2GJ1fZQoaAZHQJQ55mkFfRhoB03oA2gIR0CvI+p7b+LndX2UKGgGR0CQLrDMvAXVaAdN6ANoCEdAryXhNoJzDHV9lChoBkdAk8U5jQRf4WgHTegDaAhHQK8ob4ZdfLN1fZQoaAZHQJG2Cgi/wiJoB03oA2gIR0CvLJMAFPi2dX2UKGgGR0CTLwpm29csaAdN6ANoCEdArzHCxHG0eHV9lChoBkdAk4598/lhgGgHTegDaAhHQK8y7f4yoGZ1fZQoaAZHQJFfAn5SFXdoB03oA2gIR0CvNUa9kBjndX2UKGgGR0CTW0UlzEJjaAdN6ANoCEdArzlSEeyRjnV9lChoBkdAkrNND2Jzk2gHTegDaAhHQK9A4xeLNwB1fZQoaAZHQJJZSuIRAbBoB03oA2gIR0CvQnLnkkrxdX2UKGgGR0CRFj3UhFEzaAdN6ANoCEdAr0TPp6hQFnV9lChoBkdAkXYmBjFyaWgHTegDaAhHQK9I2F9KEnN1fZQoaAZHQJOpqCvovBdoB03oA2gIR0CvTgkcsDnvdX2UKGgGR0CS8jbCJoCdaAdN6ANoCEdAr08rns9jgHV9lChoBkdAkqxFyNn5BWgHTegDaAhHQK9ReOAAhjh1fZQoaAZHQJK3dgF5fMRoB03oA2gIR0CvVYYagmJFdX2UKGgGR0CTjM7kGRmsaAdN6ANoCEdAr12nE87p3XV9lChoBkdAlLeL9VFQVWgHTegDaAhHQK9e4lHjIaN1fZQoaAZHQIynNbxEv01oB03oA2gIR0CvYUaouPFOdX2UKGgGR0CUAO2LYPGyaAdN6ANoCEdAr2VaMFUyYXV9lChoBkdAk4UzBEa2nmgHTegDaAhHQK9qfx8UmD11fZQoaAZHQJRUEfV7QcBoB03oA2gIR0Cva6p0fYBedX2UKGgGR0CNa644Ia99aAdN6ANoCEdAr24KRMewLXV9lChoBkdAku715nlGPWgHTegDaAhHQK9yO66reZZ1fZQoaAZHQI817SLIgeRoB03oA2gIR0CvehnwG4ZudX2UKGgGR0CSuD20AtFsaAdN6ANoCEdAr3tK2KEWZnV9lChoBkdAkBya/20zCWgHTegDaAhHQK99purIYFd1fZQoaAZHQJOmF5xBE8doB03oA2gIR0Cvgb3Vsk6cdX2UKGgGR0CS9t7tAs06aAdN6ANoCEdAr4bvl0YCQ3V9lChoBkdAk9YrlA/s3WgHTegDaAhHQK+IHRgqmTF1fZQoaAZHQJQcJsImgJ1oB03oA2gIR0CvinJrcj7idX2UKGgGR0CRkznCfpUxaAdN6ANoCEdAr482mFaje3V9lChoBkdAjk+oZZSvT2gHTToDaAhHQK+Vt9Tgl4V1fZQoaAZHQJJI0TlDF61oB03oA2gIR0Cvltvqs2ehdX2UKGgGR0CTGCjn3cpLaAdN6ANoCEdAr5pwLApKBnV9lChoBkdAlqFT5XU6P2gHTegDaAhHQK+eg+lj3Eh1fZQoaAZHQJBoFLAYYSBoB03oA2gIR0CvorBEBsAOdX2UKGgGR0CUbtjbzshQaAdN6ANoCEdAr6O1cbBGhHV9lChoBkdAkzKZbt7a7GgHTegDaAhHQK+nNRUFSsN1fZQoaAZHQJXpZZntfHBoB03oA2gIR0CvrDcqFyq/dX2UKGgGR0CNADhYvFm4aAdN6ANoCEdAr7IxDCxeLXV9lChoBkdAkmd4hY/3WWgHTegDaAhHQK+zTId2gWd1fZQoaAZHQJKFRA2Q4jtoB03oA2gIR0CvtsTc6/7BdX2UKGgGR0CU0V68g6ltaAdN6ANoCEdAr7rF4gRsdnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}} |