Very short training (80k steps?)
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +16 -16
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- a2c-PandaReachDense-v2/system_info.txt +4 -4
- config.json +1 -1
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -1.38 +/- 0.26
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:43b30560bcf365e8bdee73611fefe7308ac2d7b2e248b00192a1e3a4606f1d7a
|
3 |
+
size 107972
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -19,50 +19,50 @@
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
-
"num_timesteps":
|
23 |
-
"_total_timesteps":
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
31 |
":type:": "<class 'function'>",
|
32 |
-
":serialized:": "
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
-
":serialized:": "
|
37 |
-
"achieved_goal": "[[0.
|
38 |
-
"desired_goal": "[[ 0.
|
39 |
-
"observation": "[[0.
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
43 |
-
":serialized:": "
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
53 |
"use_sde": false,
|
54 |
"sde_sample_freq": -1,
|
55 |
-
"_current_progress_remaining": 0.
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
-
"_n_updates":
|
66 |
"n_steps": 5,
|
67 |
"gamma": 0.99,
|
68 |
"gae_lambda": 1.0,
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x0000026772408430>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x0000026772402440>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
+
"num_timesteps": 99256,
|
23 |
+
"_total_timesteps": 800000,
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
+
"start_time": 1690814581503281300,
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
31 |
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVjwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXUM6XFVzZXJzXEJlblxBcHBEYXRhXFJvYW1pbmdcUHl0aG9uXFB5dGhvbjMxMFxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAcG09P/vB7L0OrOG+e8Smv6X5iD/MPWQ9usWcP/P/jb+kh4A/TAxDP20hxb6tz9++lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1siCP5Lujb0YUQ2/6snWv0EqyT8vr5I+VSvUPzWG0b8XqFo/IPCCP/ALtb5stVi/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABwbT0/+8HsvQ6s4b6tCA494HU+v2xlmj97xKa/pfmIP8w9ZD3bu68/4wQrvxZbyj26xZw/8/+Nv6SHgD/xIm89WOICvqeHDj9MDEM/bSHFvq3P374SLw4/0OPOv8w7NT+UaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.73995113 -0.11560436 -0.4407658 ]\n [-1.3028711 1.0701185 0.055723 ]\n [ 1.2247841 -1.1093735 1.0041394 ]\n [ 0.7619064 -0.38502064 -0.43713132]]",
|
38 |
+
"desired_goal": "[[ 1.021754 -0.06930269 -0.55201864]\n [-1.6780369 1.571602 0.2864928 ]\n [ 1.6575724 -1.6369082 0.85412735]\n [ 1.022953 -0.3536067 -0.8465183 ]]",
|
39 |
+
"observation": "[[ 0.73995113 -0.11560436 -0.4407658 0.03467624 -0.7439861 1.2062201 ]\n [-1.3028711 1.0701185 0.055723 1.3729204 -0.6680433 0.09880655]\n [ 1.2247841 -1.1093735 1.0041394 0.05838293 -0.12781656 0.5567574 ]\n [ 0.7619064 -0.38502064 -0.43713132 0.55540574 -1.6163273 0.7079437 ]]"
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuzkJvlC8wD2RAOc9vgmmPDRCQD2NSlg+7xmcPQ6BJr2Fw709ED70PTvCAj6O2nI+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[-0.13400929 0.09410918 0.11279405]\n [ 0.02026832 0.04693814 0.21122189]\n [ 0.07622134 -0.04065042 0.09265808]\n [ 0.119259 0.12769406 0.23716184]]",
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
53 |
"use_sde": false,
|
54 |
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.87595,
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIH5+Qnbcx97+UhpRSlIwBbJRLMowBdJRHQG0NFBIFvAJ1fZQoaAZoCWgPQwi6SQwCK4f/v5SGlFKUaBVLMmgWR0BtCXYQJ5VwdX2UKGgGaAloD0MIqKj6lc7H+L+UhpRSlGgVSzJoFkdAbQWW0qpcX3V9lChoBmgJaA9DCI18XvHUY/i/lIaUUpRoFUsyaBZHQG0B0Cq6vq11fZQoaAZoCWgPQwhaL4Zyot33v5SGlFKUaBVLMmgWR0BtG9x2jfvXdX2UKGgGaAloD0MIQMHFihoM9b+UhpRSlGgVSzJoFkdAbRg+vhZQpHV9lChoBmgJaA9DCDfCoiJOp/i/lIaUUpRoFUsyaBZHQG0UX4TK1Xx1fZQoaAZoCWgPQwhbmlshrAb7v5SGlFKUaBVLMmgWR0BtEJCtzS1FdX2UKGgGaAloD0MIeqUsQxwrAMCUhpRSlGgVSzJoFkdAbSmEqUeMh3V9lChoBmgJaA9DCIrHRbWIaPm/lIaUUpRoFUsyaBZHQG0l5uyeI2x1fZQoaAZoCWgPQwi1UgjkEsf3v5SGlFKUaBVLMmgWR0BtIgd2gWaddX2UKGgGaAloD0MIt0YE4+AS+7+UhpRSlGgVSzJoFkdAbR441gpjMHV9lChoBmgJaA9DCJl+iXjr/Pm/lIaUUpRoFUsyaBZHQG03X7tRekZ1fZQoaAZoCWgPQwgmxFxStR0AwJSGlFKUaBVLMmgWR0BtM7mSyMUAdX2UKGgGaAloD0MI9Q63Q8Pi+L+UhpRSlGgVSzJoFkdAbS/i+cpb2XV9lChoBmgJaA9DCDp4JjRJ7Pu/lIaUUpRoFUsyaBZHQG0sE/KQq7R1fZQoaAZoCWgPQwjNBS6PNaMBwJSGlFKUaBVLMmgWR0BtRbFOwgTzdX2UKGgGaAloD0MISino9pIG97+UhpRSlGgVSzJoFkdAbUILa24NJHV9lChoBmgJaA9DCJvLDYY6bPm/lIaUUpRoFUsyaBZHQG0+NFz+3ph1fZQoaAZoCWgPQwjr4jYawNv3v5SGlFKUaBVLMmgWR0BtOm21D0DmdX2UKGgGaAloD0MIG7gDdcrj9L+UhpRSlGgVSzJoFkdAbVRAaef7JnV9lChoBmgJaA9DCCdMGM3K1gDAlIaUUpRoFUsyaBZHQG1QmoBJZnt1fZQoaAZoCWgPQwixMEROX+8BwJSGlFKUaBVLMmgWR0BtTLtG/etTdX2UKGgGaAloD0MIjsh3KXVJ97+UhpRSlGgVSzJoFkdAbUj04iosI3V9lChoBmgJaA9DCFr1udqKPfm/lIaUUpRoFUsyaBZHQG1hqNyYG+t1fZQoaAZoCWgPQwj/y7VoAZr7v5SGlFKUaBVLMmgWR0BtXgL1EmY0dX2UKGgGaAloD0MI6uv5muXy+b+UhpRSlGgVSzJoFkdAbVor7O3UhHV9lChoBmgJaA9DCBNgWP58m/y/lIaUUpRoFUsyaBZHQG1WXRPXTVl1fZQoaAZoCWgPQwh1VgvsMZH0v5SGlFKUaBVLMmgWR0BtcJJTVDrrdX2UKGgGaAloD0MIiGh0B7Fz+b+UhpRSlGgVSzJoFkdAbWz0nPVurXV9lChoBmgJaA9DCA71u7A1G/a/lIaUUpRoFUsyaBZHQG1pFWOp84R1fZQoaAZoCWgPQwhLyt3n+Gj6v5SGlFKUaBVLMmgWR0BtZUaKk2xZdX2UKGgGaAloD0MI0gFJ2LeT+b+UhpRSlGgVSzJoFkdAbX8RlpXZG3V9lChoBmgJaA9DCO86G/LPDPu/lIaUUpRoFUsyaBZHQG17c9fTkQx1fZQoaAZoCWgPQwg/OQoQBTP/v5SGlFKUaBVLMmgWR0Btd5R8+iaidX2UKGgGaAloD0MIgT6RJ0lX/b+UhpRSlGgVSzJoFkdAbXPN9ph4MXV9lChoBmgJaA9DCPESnPpAMvS/lIaUUpRoFUsyaBZHQG2O0AcT8Hh1fZQoaAZoCWgPQwjScwtdiYD5v5SGlFKUaBVLMmgWR0BtizJOnEVGdX2UKGgGaAloD0MIBOj3/ZvX+L+UhpRSlGgVSzJoFkdAbYdTF2mpEXV9lChoBmgJaA9DCEonEkw1UwDAlIaUUpRoFUsyaBZHQG2DjG96C191fZQoaAZoCWgPQwhsXP+uz1z5v5SGlFKUaBVLMmgWR0BtnlUfgaWHdX2UKGgGaAloD0MId2ouNxjq97+UhpRSlGgVSzJoFkdAbZqvL5h0AHV9lChoBmgJaA9DCJ4oCYm0jfm/lIaUUpRoFUsyaBZHQG2W2DQJHAh1fZQoaAZoCWgPQwgawFsgQbH5v5SGlFKUaBVLMmgWR0BtkwlSjxkNdX2UKGgGaAloD0MItU/HYwbq+7+UhpRSlGgVSzJoFkdAba0NNrTH83V9lChoBmgJaA9DCFzmdFlMLPy/lIaUUpRoFUsyaBZHQG2pb4BV+7V1fZQoaAZoCWgPQwgpCYm0jX/5v5SGlFKUaBVLMmgWR0BtpZBE8aGYdX2UKGgGaAloD0MIER0CRwKN+L+UhpRSlGgVSzJoFkdAbaHJnQID5nV9lChoBmgJaA9DCHfX2ZB/Zv2/lIaUUpRoFUsyaBZHQG29JcxCY1J1fZQoaAZoCWgPQwicMjffiO73v5SGlFKUaBVLMmgWR0BtuYAbQ1JldX2UKGgGaAloD0MINgGG5c/3/L+UhpRSlGgVSzJoFkdAbbWo2n8893V9lChoBmgJaA9DCLL0oQvqewDAlIaUUpRoFUsyaBZHQG2x2joIOYp1fZQoaAZoCWgPQwjByMuaWGD6v5SGlFKUaBVLMmgWR0BtzW/UONHZdX2UKGgGaAloD0MIucfShy5o/L+UhpRSlGgVSzJoFkdAbcnSF49ovnV9lChoBmgJaA9DCH2vITguI/u/lIaUUpRoFUsyaBZHQG3F8t5D7ZZ1fZQoaAZoCWgPQwhCeR9Hc2QBwJSGlFKUaBVLMmgWR0BtwiQFLWZrdX2UKGgGaAloD0MIDTUKSWZ19L+UhpRSlGgVSzJoFkdAbd0mF8G9pXV9lChoBmgJaA9DCMIxy54ENvy/lIaUUpRoFUsyaBZHQG3ZgDA8B+51fZQoaAZoCWgPQwiaJ9cUyGz4v5SGlFKUaBVLMmgWR0Bt1akoF3Y+dX2UKGgGaAloD0MIsOYAwRz9/b+UhpRSlGgVSzJoFkdAbdHaTwDvE3V9lChoBmgJaA9DCLfRAN4Cifi/lIaUUpRoFUsyaBZHQG3su5z5oGp1fZQoaAZoCWgPQwhdUUoIVtX6v5SGlFKUaBVLMmgWR0Bt6R3iaRZEdX2UKGgGaAloD0MI5PT1fM1SAMCUhpRSlGgVSzJoFkdAbeU+pwS8J3V9lChoBmgJaA9DCFHZsKayaPm/lIaUUpRoFUsyaBZHQG3hd/8VHnV1fZQoaAZoCWgPQwhBLQYP0377v5SGlFKUaBVLMmgWR0Bt/BoXbdrPdX2UKGgGaAloD0MIud+hKNBn/b+UhpRSlGgVSzJoFkdAbfh0L+glGHV9lChoBmgJaA9DCHKMZI9Qc/e/lIaUUpRoFUsyaBZHQG30lPSDyvt1fZQoaAZoCWgPQwiQMXctId/7v5SGlFKUaBVLMmgWR0Bt8M6RyOrAdX2UKGgGaAloD0MIyEJ0CBzJ+r+UhpRSlGgVSzJoFkdAbgvTisGPgnV9lChoBmgJaA9DCDuPiv87Ivm/lIaUUpRoFUsyaBZHQG4INdJJ5FB1fZQoaAZoCWgPQwh/FeC7zVv4v5SGlFKUaBVLMmgWR0BuBFaY/mkndX2UKGgGaAloD0MIXyf1ZWmn9r+UhpRSlGgVSzJoFkdAbgCHv+fh/HV9lChoBmgJaA9DCIUlHlA25f2/lIaUUpRoFUsyaBZHQG4a/ozN2Tx1fZQoaAZoCWgPQwgdqinJOtz3v5SGlFKUaBVLMmgWR0BuF2DUVi4KdX2UKGgGaAloD0MIpYP1fw5z+L+UhpRSlGgVSzJoFkdAbhOBmwqy4XV9lChoBmgJaA9DCMr5Yu/Fl/u/lIaUUpRoFUsyaBZHQG4PuvMbFS91fZQoaAZoCWgPQwiKdD+nIL/4v5SGlFKUaBVLMmgWR0BuLZYaHbh4dX2UKGgGaAloD0MIjJ/GvfmN+L+UhpRSlGgVSzJoFkdAbinweeWfLHV9lChoBmgJaA9DCN+Mmq+Sj/e/lIaUUpRoFUsyaBZHQG4mETYdyT91fZQoaAZoCWgPQwik+zkF+Vn8v5SGlFKUaBVLMmgWR0BuIkJfICEIdX2UKGgGaAloD0MIskeoGVIFAcCUhpRSlGgVSzJoFkdAbjxnAZbY9XV9lChoBmgJaA9DCDfGTngJjgHAlIaUUpRoFUsyaBZHQG44yUkfLcN1fZQoaAZoCWgPQwgpkxraAOz/v5SGlFKUaBVLMmgWR0BuNPJDE3sHdX2UKGgGaAloD0MIWMudmWA4/L+UhpRSlGgVSzJoFkdAbjEjZ+QU6HV9lChoBmgJaA9DCFWkwthCkPq/lIaUUpRoFUsyaBZHQG5K/s3Q2Mt1fZQoaAZoCWgPQwgJiEm4kMf+v5SGlFKUaBVLMmgWR0BuR1joZAIIdX2UKGgGaAloD0MIUiY1tAGY/r+UhpRSlGgVSzJoFkdAbkN5s0pEyHV9lChoBmgJaA9DCP2Es1vLZPW/lIaUUpRoFUsyaBZHQG4/swL3K0V1fZQoaAZoCWgPQwh3EDtT6Dz7v5SGlFKUaBVLMmgWR0BuWUo6S1VpdX2UKGgGaAloD0MIotPzbiyo+L+UhpRSlGgVSzJoFkdAblWkUKzAvnV9lChoBmgJaA9DCJrudVJfVve/lIaUUpRoFUsyaBZHQG5RzUiILw51fZQoaAZoCWgPQwj+gXLbvgf/v5SGlFKUaBVLMmgWR0BuTf5xiobXdX2UKGgGaAloD0MI36RpUDRP+7+UhpRSlGgVSzJoFkdAbmhMRpUPx3V9lChoBmgJaA9DCN9sc2N6gvW/lIaUUpRoFUsyaBZHQG5krpA2Q4l1fZQoaAZoCWgPQwgbnl4pyxD3v5SGlFKUaBVLMmgWR0BuYM9SuQp4dX2UKGgGaAloD0MITBx5ILKI/r+UhpRSlGgVSzJoFkdAbl0IrOJLunV9lChoBmgJaA9DCMB1xYzwtvy/lIaUUpRoFUsyaBZHQG536fapPyl1fZQoaAZoCWgPQwgnZyjueFP0v5SGlFKUaBVLMmgWR0BudEQNCqp+dX2UKGgGaAloD0MI7E53nnhO97+UhpRSlGgVSzJoFkdAbnBk078vVXV9lChoBmgJaA9DCJaS5SSUvvu/lIaUUpRoFUsyaBZHQG5splz2exx1ZS4="
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
+
"_n_updates": 4962,
|
66 |
"n_steps": 5,
|
67 |
"gamma": 0.99,
|
68 |
"gae_lambda": 1.0,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0b7c7d0fbd51ceb14ee297901ec8592c92227457bb5d15317cc8602ebc2638da
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1bdc4ccf58a1c6a2fbf8fe37acea8bc003d15fd7b2bbc90c0c4d0b5e48095caa
|
3 |
size 46014
|
a2c-PandaReachDense-v2/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
- OS:
|
2 |
-
- Python: 3.10.
|
3 |
- Stable-Baselines3: 1.8.0
|
4 |
-
- PyTorch: 2.0.1+
|
5 |
- GPU Enabled: True
|
6 |
-
- Numpy: 1.
|
7 |
- Gym: 0.21.0
|
|
|
1 |
+
- OS: Windows-10-10.0.19045-SP0 10.0.19045
|
2 |
+
- Python: 3.10.7
|
3 |
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu117
|
5 |
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.3
|
7 |
- Gym: 0.21.0
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c0e571a91b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c0e571b6900>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690472560835166791, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAlyDcPpnrFDxD0Ao/lyDcPpnrFDxD0Ao/lyDcPpnrFDxD0Ao/lyDcPpnrFDxD0Ao/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAaj+lPhlDnr8VsV2/YY7MP37iV77jtdq/VuOav4cEMz7eKJs/3WapPyyxXD8Jj7A/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACXINw+mesUPEPQCj/ljZg8W8yNOueRQjyXINw+mesUPEPQCj/ljZg8W8yNOueRQjyXINw+mesUPEPQCj/ljZg8W8yNOueRQjyXINw+mesUPEPQCj/ljZg8W8yNOueRQjyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.42993614 0.00908937 0.5422403 ]\n [0.42993614 0.00908937 0.5422403 ]\n [0.42993614 0.00908937 0.5422403 ]\n [0.42993614 0.00908937 0.5422403 ]]", "desired_goal": "[[ 0.32274944 -1.2364227 -0.8659833 ]\n [ 1.598095 -0.21082494 -1.7086757 ]\n [-1.2100627 0.17482196 1.2121847 ]\n [ 1.3234516 0.8620784 1.3793651 ]]", "observation": "[[0.42993614 0.00908937 0.5422403 0.01862235 0.00108183 0.01187561]\n [0.42993614 0.00908937 0.5422403 0.01862235 0.00108183 0.01187561]\n [0.42993614 0.00908937 0.5422403 0.01862235 0.00108183 0.01187561]\n [0.42993614 0.00908937 0.5422403 0.01862235 0.00108183 0.01187561]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAydGnOyj2kb2S+t49L7DDPaEaF7wWmc097QD4PRNx9rz4nnk+jtyfvEcT8T1qWBg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.00512144 -0.07127029 0.10887636]\n [ 0.09555089 -0.00922266 0.10038964]\n [ 0.12109552 -0.03008321 0.24377048]\n [-0.01951435 0.11771255 0.14877477]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzXNEvktpBMCUhpRSlIwBbJRLMowBdJRHQKqexc6eXiR1fZQoaAZoCWgPQwgAb4EExY/9v5SGlFKUaBVLMmgWR0CqnmmLcbiqdX2UKGgGaAloD0MI6GhVSzqqBcCUhpRSlGgVSzJoFkdAqp4Ms189fXV9lChoBmgJaA9DCJ4LI72oXfq/lIaUUpRoFUsyaBZHQKqdp7P6bfB1fZQoaAZoCWgPQwhS1QRR94EAwJSGlFKUaBVLMmgWR0Cqn/w176YWdX2UKGgGaAloD0MI6GfqdYtAAsCUhpRSlGgVSzJoFkdAqp+f+fh/AnV9lChoBmgJaA9DCA2OklfnGAPAlIaUUpRoFUsyaBZHQKqfQup0fYB1fZQoaAZoCWgPQwj5ugz/6QYBwJSGlFKUaBVLMmgWR0Cqnt36yjYadX2UKGgGaAloD0MIAYV6+gicBcCUhpRSlGgVSzJoFkdAqqEWbwz+FXV9lChoBmgJaA9DCLlt36P+WgbAlIaUUpRoFUsyaBZHQKqgugwGnoB1fZQoaAZoCWgPQwi309aIYBwEwJSGlFKUaBVLMmgWR0CqoFz4L1EmdX2UKGgGaAloD0MI7+L9uP1SBsCUhpRSlGgVSzJoFkdAqp/3/3nIQ3V9lChoBmgJaA9DCOmedY2WIwPAlIaUUpRoFUsyaBZHQKqidK2a2F51fZQoaAZoCWgPQwhyT1d3LLYEwJSGlFKUaBVLMmgWR0Cqohh99c8ldX2UKGgGaAloD0MIQKTfvg48AcCUhpRSlGgVSzJoFkdAqqG8N6PbPHV9lChoBmgJaA9DCIqQup19pfq/lIaUUpRoFUsyaBZHQKqhV1loUSJ1fZQoaAZoCWgPQwgLtaZ5x8kDwJSGlFKUaBVLMmgWR0Cqo6y13MY/dX2UKGgGaAloD0MIlfJaCd0FAMCUhpRSlGgVSzJoFkdAqqNRJ7LMcXV9lChoBmgJaA9DCOxRuB6FywbAlIaUUpRoFUsyaBZHQKqi9QNTcZd1fZQoaAZoCWgPQwjCbAIMyx/8v5SGlFKUaBVLMmgWR0CqopFfqoqDdX2UKGgGaAloD0MIY7Mj1Xf++L+UhpRSlGgVSzJoFkdAqqT7hisnzHV9lChoBmgJaA9DCC4gtB6+DP+/lIaUUpRoFUsyaBZHQKqkn02cawV1fZQoaAZoCWgPQwim1ZC4x1ISwJSGlFKUaBVLMmgWR0CqpEJI1+AmdX2UKGgGaAloD0MISSpTzEGwBMCUhpRSlGgVSzJoFkdAqqPdhkRSP3V9lChoBmgJaA9DCHtOet/4+gbAlIaUUpRoFUsyaBZHQKqmN/iHZbp1fZQoaAZoCWgPQwicxCCwcggMwJSGlFKUaBVLMmgWR0Cqpdu45Lh8dX2UKGgGaAloD0MIiEojZvZZAcCUhpRSlGgVSzJoFkdAqqV+uoxYaHV9lChoBmgJaA9DCE3WqIdo9ALAlIaUUpRoFUsyaBZHQKqlGd/axot1fZQoaAZoCWgPQwiZmgRvSKP2v5SGlFKUaBVLMmgWR0Cqp5XAdn01dX2UKGgGaAloD0MITbotkQtOA8CUhpRSlGgVSzJoFkdAqqc5prULD3V9lChoBmgJaA9DCM++8iA9RfS/lIaUUpRoFUsyaBZHQKqm3XjlxOt1fZQoaAZoCWgPQwjZeRubHSn7v5SGlFKUaBVLMmgWR0CqpnikoF3ZdX2UKGgGaAloD0MIEAcJUb5g+7+UhpRSlGgVSzJoFkdAqqjVvjwQUnV9lChoBmgJaA9DCFgDlIYaxQLAlIaUUpRoFUsyaBZHQKqoeWmgrYp1fZQoaAZoCWgPQwhCe/Xx0PcCwJSGlFKUaBVLMmgWR0CqqBxEWqLkdX2UKGgGaAloD0MIkNeDSfFxAMCUhpRSlGgVSzJoFkdAqqe3Ue+23XV9lChoBmgJaA9DCAFuFi8WRgHAlIaUUpRoFUsyaBZHQKqqJydWhh91fZQoaAZoCWgPQwhvEoPAyoEFwJSGlFKUaBVLMmgWR0CqqcreyiVTdX2UKGgGaAloD0MIWTFcHQCx/b+UhpRSlGgVSzJoFkdAqqltzOoo/nV9lChoBmgJaA9DCAEydOygUve/lIaUUpRoFUsyaBZHQKqpCNYKYzB1fZQoaAZoCWgPQwhCzCVV240IwJSGlFKUaBVLMmgWR0Cqq2xWtEG8dX2UKGgGaAloD0MIFw6EZAHzBsCUhpRSlGgVSzJoFkdAqqsP/vOQhnV9lChoBmgJaA9DCG6/fLJiePe/lIaUUpRoFUsyaBZHQKqqs4CIUJx1fZQoaAZoCWgPQwhmogip29n6v5SGlFKUaBVLMmgWR0Cqqk9Gy5ZsdX2UKGgGaAloD0MIfVuwVBfQAcCUhpRSlGgVSzJoFkdAqqyzguRLb3V9lChoBmgJaA9DCFRx4xbzYxDAlIaUUpRoFUsyaBZHQKqsVykKu0V1fZQoaAZoCWgPQwjuQJ3y6AYLwJSGlFKUaBVLMmgWR0Cqq/oakyk9dX2UKGgGaAloD0MIhC7h0Ft897+UhpRSlGgVSzJoFkdAqquVSIgvDnV9lChoBmgJaA9DCKdZoN0hRfm/lIaUUpRoFUsyaBZHQKqt9lvIfbN1fZQoaAZoCWgPQwixwi0fSUkJwJSGlFKUaBVLMmgWR0CqrZoInjQzdX2UKGgGaAloD0MISYCaWrZWDsCUhpRSlGgVSzJoFkdAqq09BSk0rXV9lChoBmgJaA9DCBJpG3+i8vy/lIaUUpRoFUsyaBZHQKqs2CnP3SN1fZQoaAZoCWgPQwgJF/IIbmT5v5SGlFKUaBVLMmgWR0Cqrys2eg+RdX2UKGgGaAloD0MIkSkfgqpRBMCUhpRSlGgVSzJoFkdAqq7O/5+H8HV9lChoBmgJaA9DCL7e/fFe1QLAlIaUUpRoFUsyaBZHQKqucl2NedF1fZQoaAZoCWgPQwh4KuCe5x8QwJSGlFKUaBVLMmgWR0Cqrg4G+sYEdX2UKGgGaAloD0MIMXkDzHwnAcCUhpRSlGgVSzJoFkdAqrBrRKHwgHV9lChoBmgJaA9DCOfFia921AbAlIaUUpRoFUsyaBZHQKqwDwCr92p1fZQoaAZoCWgPQwg17zhFR7IDwJSGlFKUaBVLMmgWR0Cqr7HpB5X2dX2UKGgGaAloD0MIfh6jPPMyDMCUhpRSlGgVSzJoFkdAqq9NA5aNdnV9lChoBmgJaA9DCEKXcOgt/gHAlIaUUpRoFUsyaBZHQKqxpXcQAdZ1fZQoaAZoCWgPQwgVcTrJVncEwJSGlFKUaBVLMmgWR0CqsUkS/TLGdX2UKGgGaAloD0MI44xhTtD2EMCUhpRSlGgVSzJoFkdAqrDr/uLJjnV9lChoBmgJaA9DCEq05PG0XAnAlIaUUpRoFUsyaBZHQKqwhxMnJDF1fZQoaAZoCWgPQwiOO6WD9X//v5SGlFKUaBVLMmgWR0Cqs0sTewcHdX2UKGgGaAloD0MIwhcmUwUDDMCUhpRSlGgVSzJoFkdAqrLvXqZ+hHV9lChoBmgJaA9DCD1jX7LxQATAlIaUUpRoFUsyaBZHQKqyk0OVgQZ1fZQoaAZoCWgPQwj36XjMQKX8v5SGlFKUaBVLMmgWR0Cqsi71AZ88dX2UKGgGaAloD0MI9pUH6SkSCMCUhpRSlGgVSzJoFkdAqrV7P0I1L3V9lChoBmgJaA9DCHtLOV/sXQDAlIaUUpRoFUsyaBZHQKq1H5ylvZR1fZQoaAZoCWgPQwirPeyFAvYDwJSGlFKUaBVLMmgWR0CqtMMTFl06dX2UKGgGaAloD0MIe9tMhXjkAcCUhpRSlGgVSzJoFkdAqrRgPGyX2XV9lChoBmgJaA9DCAt+G2K8ZgvAlIaUUpRoFUsyaBZHQKq3oKSgXdl1fZQoaAZoCWgPQwik+s4vSvACwJSGlFKUaBVLMmgWR0Cqt0V58jRldX2UKGgGaAloD0MImBWKdD/HBcCUhpRSlGgVSzJoFkdAqrbrGvOhTXV9lChoBmgJaA9DCIelgR/VsAfAlIaUUpRoFUsyaBZHQKq2h4k/r0J1fZQoaAZoCWgPQwhss7ES84wHwJSGlFKUaBVLMmgWR0CqucM1TBIndX2UKGgGaAloD0MIWi4bnfPzB8CUhpRSlGgVSzJoFkdAqrln2/SH/XV9lChoBmgJaA9DCLL1DOGYRQbAlIaUUpRoFUsyaBZHQKq5C72+PBB1fZQoaAZoCWgPQwg+zjRh+zkSwJSGlFKUaBVLMmgWR0CquKeHJtBOdX2UKGgGaAloD0MInpW04htK/L+UhpRSlGgVSzJoFkdAqrtcnJDE33V9lChoBmgJaA9DCFUxlX7C2QbAlIaUUpRoFUsyaBZHQKq7AFdLQHB1fZQoaAZoCWgPQwiGkzR/TAsFwJSGlFKUaBVLMmgWR0CquqNFBppOdX2UKGgGaAloD0MIzEbn/BRnBsCUhpRSlGgVSzJoFkdAqro+ee4Cp3V9lChoBmgJaA9DCM0iFFtB0wPAlIaUUpRoFUsyaBZHQKq8mQA+6iF1fZQoaAZoCWgPQwgewvhp3BsCwJSGlFKUaBVLMmgWR0CqvDy5qdpZdX2UKGgGaAloD0MI00z3OqkvBMCUhpRSlGgVSzJoFkdAqrvfoFFDv3V9lChoBmgJaA9DCBPXMa64OATAlIaUUpRoFUsyaBZHQKq7enrIHTt1fZQoaAZoCWgPQwjBqKROQJMLwJSGlFKUaBVLMmgWR0CqvdASvkimdX2UKGgGaAloD0MISDKrd7gdAcCUhpRSlGgVSzJoFkdAqr1zrTpgTnV9lChoBmgJaA9DCMtmDkktVAfAlIaUUpRoFUsyaBZHQKq9FoqTbFl1fZQoaAZoCWgPQwgldQKaCPsJwJSGlFKUaBVLMmgWR0CqvLGecx0udX2UKGgGaAloD0MIWFaalILOC8CUhpRSlGgVSzJoFkdAqr7/Qtz0YnV9lChoBmgJaA9DCN3OvvIgHQ/AlIaUUpRoFUsyaBZHQKq+ot2cJ+l1fZQoaAZoCWgPQwjXa3pQUEoFwJSGlFKUaBVLMmgWR0CqvkXRw6yTdX2UKGgGaAloD0MIasAg6dMqBsCUhpRSlGgVSzJoFkdAqr3g2AG0NXV9lChoBmgJaA9DCO9Z12g5MAPAlIaUUpRoFUsyaBZHQKrAL0Yj0MB1fZQoaAZoCWgPQwiCO1CnPDoOwJSGlFKUaBVLMmgWR0Cqv9Lux8lYdX2UKGgGaAloD0MIq3mOyHdJC8CUhpRSlGgVSzJoFkdAqr919H+ZPXV9lChoBmgJaA9DCLxXrUz4hQnAlIaUUpRoFUsyaBZHQKq/ELtNSIh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x0000026772408430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x0000026772402440>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 99256, "_total_timesteps": 800000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690814581503281300, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVjwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXUM6XFVzZXJzXEJlblxBcHBEYXRhXFJvYW1pbmdcUHl0aG9uXFB5dGhvbjMxMFxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAcG09P/vB7L0OrOG+e8Smv6X5iD/MPWQ9usWcP/P/jb+kh4A/TAxDP20hxb6tz9++lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1siCP5Lujb0YUQ2/6snWv0EqyT8vr5I+VSvUPzWG0b8XqFo/IPCCP/ALtb5stVi/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABwbT0/+8HsvQ6s4b6tCA494HU+v2xlmj97xKa/pfmIP8w9ZD3bu68/4wQrvxZbyj26xZw/8/+Nv6SHgD/xIm89WOICvqeHDj9MDEM/bSHFvq3P374SLw4/0OPOv8w7NT+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.73995113 -0.11560436 -0.4407658 ]\n [-1.3028711 1.0701185 0.055723 ]\n [ 1.2247841 -1.1093735 1.0041394 ]\n [ 0.7619064 -0.38502064 -0.43713132]]", "desired_goal": "[[ 1.021754 -0.06930269 -0.55201864]\n [-1.6780369 1.571602 0.2864928 ]\n [ 1.6575724 -1.6369082 0.85412735]\n [ 1.022953 -0.3536067 -0.8465183 ]]", "observation": "[[ 0.73995113 -0.11560436 -0.4407658 0.03467624 -0.7439861 1.2062201 ]\n [-1.3028711 1.0701185 0.055723 1.3729204 -0.6680433 0.09880655]\n [ 1.2247841 -1.1093735 1.0041394 0.05838293 -0.12781656 0.5567574 ]\n [ 0.7619064 -0.38502064 -0.43713132 0.55540574 -1.6163273 0.7079437 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuzkJvlC8wD2RAOc9vgmmPDRCQD2NSlg+7xmcPQ6BJr2Fw709ED70PTvCAj6O2nI+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.13400929 0.09410918 0.11279405]\n [ 0.02026832 0.04693814 0.21122189]\n [ 0.07622134 -0.04065042 0.09265808]\n [ 0.119259 0.12769406 0.23716184]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.87595, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIH5+Qnbcx97+UhpRSlIwBbJRLMowBdJRHQG0NFBIFvAJ1fZQoaAZoCWgPQwi6SQwCK4f/v5SGlFKUaBVLMmgWR0BtCXYQJ5VwdX2UKGgGaAloD0MIqKj6lc7H+L+UhpRSlGgVSzJoFkdAbQWW0qpcX3V9lChoBmgJaA9DCI18XvHUY/i/lIaUUpRoFUsyaBZHQG0B0Cq6vq11fZQoaAZoCWgPQwhaL4Zyot33v5SGlFKUaBVLMmgWR0BtG9x2jfvXdX2UKGgGaAloD0MIQMHFihoM9b+UhpRSlGgVSzJoFkdAbRg+vhZQpHV9lChoBmgJaA9DCDfCoiJOp/i/lIaUUpRoFUsyaBZHQG0UX4TK1Xx1fZQoaAZoCWgPQwhbmlshrAb7v5SGlFKUaBVLMmgWR0BtEJCtzS1FdX2UKGgGaAloD0MIeqUsQxwrAMCUhpRSlGgVSzJoFkdAbSmEqUeMh3V9lChoBmgJaA9DCIrHRbWIaPm/lIaUUpRoFUsyaBZHQG0l5uyeI2x1fZQoaAZoCWgPQwi1UgjkEsf3v5SGlFKUaBVLMmgWR0BtIgd2gWaddX2UKGgGaAloD0MIt0YE4+AS+7+UhpRSlGgVSzJoFkdAbR441gpjMHV9lChoBmgJaA9DCJl+iXjr/Pm/lIaUUpRoFUsyaBZHQG03X7tRekZ1fZQoaAZoCWgPQwgmxFxStR0AwJSGlFKUaBVLMmgWR0BtM7mSyMUAdX2UKGgGaAloD0MI9Q63Q8Pi+L+UhpRSlGgVSzJoFkdAbS/i+cpb2XV9lChoBmgJaA9DCDp4JjRJ7Pu/lIaUUpRoFUsyaBZHQG0sE/KQq7R1fZQoaAZoCWgPQwjNBS6PNaMBwJSGlFKUaBVLMmgWR0BtRbFOwgTzdX2UKGgGaAloD0MISino9pIG97+UhpRSlGgVSzJoFkdAbUILa24NJHV9lChoBmgJaA9DCJvLDYY6bPm/lIaUUpRoFUsyaBZHQG0+NFz+3ph1fZQoaAZoCWgPQwjr4jYawNv3v5SGlFKUaBVLMmgWR0BtOm21D0DmdX2UKGgGaAloD0MIG7gDdcrj9L+UhpRSlGgVSzJoFkdAbVRAaef7JnV9lChoBmgJaA9DCCdMGM3K1gDAlIaUUpRoFUsyaBZHQG1QmoBJZnt1fZQoaAZoCWgPQwixMEROX+8BwJSGlFKUaBVLMmgWR0BtTLtG/etTdX2UKGgGaAloD0MIjsh3KXVJ97+UhpRSlGgVSzJoFkdAbUj04iosI3V9lChoBmgJaA9DCFr1udqKPfm/lIaUUpRoFUsyaBZHQG1hqNyYG+t1fZQoaAZoCWgPQwj/y7VoAZr7v5SGlFKUaBVLMmgWR0BtXgL1EmY0dX2UKGgGaAloD0MI6uv5muXy+b+UhpRSlGgVSzJoFkdAbVor7O3UhHV9lChoBmgJaA9DCBNgWP58m/y/lIaUUpRoFUsyaBZHQG1WXRPXTVl1fZQoaAZoCWgPQwh1VgvsMZH0v5SGlFKUaBVLMmgWR0BtcJJTVDrrdX2UKGgGaAloD0MIiGh0B7Fz+b+UhpRSlGgVSzJoFkdAbWz0nPVurXV9lChoBmgJaA9DCA71u7A1G/a/lIaUUpRoFUsyaBZHQG1pFWOp84R1fZQoaAZoCWgPQwhLyt3n+Gj6v5SGlFKUaBVLMmgWR0BtZUaKk2xZdX2UKGgGaAloD0MI0gFJ2LeT+b+UhpRSlGgVSzJoFkdAbX8RlpXZG3V9lChoBmgJaA9DCO86G/LPDPu/lIaUUpRoFUsyaBZHQG17c9fTkQx1fZQoaAZoCWgPQwg/OQoQBTP/v5SGlFKUaBVLMmgWR0Btd5R8+iaidX2UKGgGaAloD0MIgT6RJ0lX/b+UhpRSlGgVSzJoFkdAbXPN9ph4MXV9lChoBmgJaA9DCPESnPpAMvS/lIaUUpRoFUsyaBZHQG2O0AcT8Hh1fZQoaAZoCWgPQwjScwtdiYD5v5SGlFKUaBVLMmgWR0BtizJOnEVGdX2UKGgGaAloD0MIBOj3/ZvX+L+UhpRSlGgVSzJoFkdAbYdTF2mpEXV9lChoBmgJaA9DCEonEkw1UwDAlIaUUpRoFUsyaBZHQG2DjG96C191fZQoaAZoCWgPQwhsXP+uz1z5v5SGlFKUaBVLMmgWR0BtnlUfgaWHdX2UKGgGaAloD0MId2ouNxjq97+UhpRSlGgVSzJoFkdAbZqvL5h0AHV9lChoBmgJaA9DCJ4oCYm0jfm/lIaUUpRoFUsyaBZHQG2W2DQJHAh1fZQoaAZoCWgPQwgawFsgQbH5v5SGlFKUaBVLMmgWR0BtkwlSjxkNdX2UKGgGaAloD0MItU/HYwbq+7+UhpRSlGgVSzJoFkdAba0NNrTH83V9lChoBmgJaA9DCFzmdFlMLPy/lIaUUpRoFUsyaBZHQG2pb4BV+7V1fZQoaAZoCWgPQwgpCYm0jX/5v5SGlFKUaBVLMmgWR0BtpZBE8aGYdX2UKGgGaAloD0MIER0CRwKN+L+UhpRSlGgVSzJoFkdAbaHJnQID5nV9lChoBmgJaA9DCHfX2ZB/Zv2/lIaUUpRoFUsyaBZHQG29JcxCY1J1fZQoaAZoCWgPQwicMjffiO73v5SGlFKUaBVLMmgWR0BtuYAbQ1JldX2UKGgGaAloD0MINgGG5c/3/L+UhpRSlGgVSzJoFkdAbbWo2n8893V9lChoBmgJaA9DCLL0oQvqewDAlIaUUpRoFUsyaBZHQG2x2joIOYp1fZQoaAZoCWgPQwjByMuaWGD6v5SGlFKUaBVLMmgWR0BtzW/UONHZdX2UKGgGaAloD0MIucfShy5o/L+UhpRSlGgVSzJoFkdAbcnSF49ovnV9lChoBmgJaA9DCH2vITguI/u/lIaUUpRoFUsyaBZHQG3F8t5D7ZZ1fZQoaAZoCWgPQwhCeR9Hc2QBwJSGlFKUaBVLMmgWR0BtwiQFLWZrdX2UKGgGaAloD0MIDTUKSWZ19L+UhpRSlGgVSzJoFkdAbd0mF8G9pXV9lChoBmgJaA9DCMIxy54ENvy/lIaUUpRoFUsyaBZHQG3ZgDA8B+51fZQoaAZoCWgPQwiaJ9cUyGz4v5SGlFKUaBVLMmgWR0Bt1akoF3Y+dX2UKGgGaAloD0MIsOYAwRz9/b+UhpRSlGgVSzJoFkdAbdHaTwDvE3V9lChoBmgJaA9DCLfRAN4Cifi/lIaUUpRoFUsyaBZHQG3su5z5oGp1fZQoaAZoCWgPQwhdUUoIVtX6v5SGlFKUaBVLMmgWR0Bt6R3iaRZEdX2UKGgGaAloD0MI5PT1fM1SAMCUhpRSlGgVSzJoFkdAbeU+pwS8J3V9lChoBmgJaA9DCFHZsKayaPm/lIaUUpRoFUsyaBZHQG3hd/8VHnV1fZQoaAZoCWgPQwhBLQYP0377v5SGlFKUaBVLMmgWR0Bt/BoXbdrPdX2UKGgGaAloD0MIud+hKNBn/b+UhpRSlGgVSzJoFkdAbfh0L+glGHV9lChoBmgJaA9DCHKMZI9Qc/e/lIaUUpRoFUsyaBZHQG30lPSDyvt1fZQoaAZoCWgPQwiQMXctId/7v5SGlFKUaBVLMmgWR0Bt8M6RyOrAdX2UKGgGaAloD0MIyEJ0CBzJ+r+UhpRSlGgVSzJoFkdAbgvTisGPgnV9lChoBmgJaA9DCDuPiv87Ivm/lIaUUpRoFUsyaBZHQG4INdJJ5FB1fZQoaAZoCWgPQwh/FeC7zVv4v5SGlFKUaBVLMmgWR0BuBFaY/mkndX2UKGgGaAloD0MIXyf1ZWmn9r+UhpRSlGgVSzJoFkdAbgCHv+fh/HV9lChoBmgJaA9DCIUlHlA25f2/lIaUUpRoFUsyaBZHQG4a/ozN2Tx1fZQoaAZoCWgPQwgdqinJOtz3v5SGlFKUaBVLMmgWR0BuF2DUVi4KdX2UKGgGaAloD0MIpYP1fw5z+L+UhpRSlGgVSzJoFkdAbhOBmwqy4XV9lChoBmgJaA9DCMr5Yu/Fl/u/lIaUUpRoFUsyaBZHQG4PuvMbFS91fZQoaAZoCWgPQwiKdD+nIL/4v5SGlFKUaBVLMmgWR0BuLZYaHbh4dX2UKGgGaAloD0MIjJ/GvfmN+L+UhpRSlGgVSzJoFkdAbinweeWfLHV9lChoBmgJaA9DCN+Mmq+Sj/e/lIaUUpRoFUsyaBZHQG4mETYdyT91fZQoaAZoCWgPQwik+zkF+Vn8v5SGlFKUaBVLMmgWR0BuIkJfICEIdX2UKGgGaAloD0MIskeoGVIFAcCUhpRSlGgVSzJoFkdAbjxnAZbY9XV9lChoBmgJaA9DCDfGTngJjgHAlIaUUpRoFUsyaBZHQG44yUkfLcN1fZQoaAZoCWgPQwgpkxraAOz/v5SGlFKUaBVLMmgWR0BuNPJDE3sHdX2UKGgGaAloD0MIWMudmWA4/L+UhpRSlGgVSzJoFkdAbjEjZ+QU6HV9lChoBmgJaA9DCFWkwthCkPq/lIaUUpRoFUsyaBZHQG5K/s3Q2Mt1fZQoaAZoCWgPQwgJiEm4kMf+v5SGlFKUaBVLMmgWR0BuR1joZAIIdX2UKGgGaAloD0MIUiY1tAGY/r+UhpRSlGgVSzJoFkdAbkN5s0pEyHV9lChoBmgJaA9DCP2Es1vLZPW/lIaUUpRoFUsyaBZHQG4/swL3K0V1fZQoaAZoCWgPQwh3EDtT6Dz7v5SGlFKUaBVLMmgWR0BuWUo6S1VpdX2UKGgGaAloD0MIotPzbiyo+L+UhpRSlGgVSzJoFkdAblWkUKzAvnV9lChoBmgJaA9DCJrudVJfVve/lIaUUpRoFUsyaBZHQG5RzUiILw51fZQoaAZoCWgPQwj+gXLbvgf/v5SGlFKUaBVLMmgWR0BuTf5xiobXdX2UKGgGaAloD0MI36RpUDRP+7+UhpRSlGgVSzJoFkdAbmhMRpUPx3V9lChoBmgJaA9DCN9sc2N6gvW/lIaUUpRoFUsyaBZHQG5krpA2Q4l1fZQoaAZoCWgPQwgbnl4pyxD3v5SGlFKUaBVLMmgWR0BuYM9SuQp4dX2UKGgGaAloD0MITBx5ILKI/r+UhpRSlGgVSzJoFkdAbl0IrOJLunV9lChoBmgJaA9DCMB1xYzwtvy/lIaUUpRoFUsyaBZHQG536fapPyl1fZQoaAZoCWgPQwgnZyjueFP0v5SGlFKUaBVLMmgWR0BudEQNCqp+dX2UKGgGaAloD0MI7E53nnhO97+UhpRSlGgVSzJoFkdAbnBk078vVXV9lChoBmgJaA9DCJaS5SSUvvu/lIaUUpRoFUsyaBZHQG5splz2exx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4962, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Windows-10-10.0.19045-SP0 10.0.19045", "Python": "3.10.7", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.3", "Gym": "0.21.0"}}
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -1.3826732128160075, "std_reward": 0.257014451515039, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-31T11:08:09.805053"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2387
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1faf489da302f5ed5c7db2104d19790770a1c672b4a49aa7007ecf4159ca1ec5
|
3 |
size 2387
|