File size: 1,874 Bytes
dc53892 b28ca3b dc53892 b28ca3b dc53892 b28ca3b 1404b73 b28ca3b dc53892 1404b73 dc53892 1404b73 dc53892 1404b73 df806a7 1404b73 dc53892 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- nyu-mll/glue
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-sst2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: glue
type: glue
args: sst2
metrics:
- type: accuracy
value: 0.5091743119266054
name: Accuracy
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-sst2
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7027
- Accuracy: 0.5092
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.01
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6868 | 1.0 | 1053 | 0.7027 | 0.5092 |
| 0.6868 | 2.0 | 2106 | 0.7027 | 0.5092 |
| 0.6867 | 3.0 | 3159 | 0.6970 | 0.5092 |
| 0.687 | 4.0 | 4212 | 0.6992 | 0.5092 |
| 0.6866 | 5.0 | 5265 | 0.6983 | 0.5092 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6
|