blghtr commited on
Commit
12202b8
·
1 Parent(s): d4b1691

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 265.15 +/- 20.41
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa45fad34c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa45fad3550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa45fad35e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa45fad3670>", "_build": "<function ActorCriticPolicy._build at 0x7fa45fad3700>", "forward": "<function ActorCriticPolicy.forward at 0x7fa45fad3790>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa45fad3820>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa45fad38b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa45fad3940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa45fad39d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa45fad3a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa45fb3bcc0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=", "n": 4, "shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673105228187741418, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJCtlT46bFs/AgMCvr6+v74zbSo+sXQdvgAAAAAAAAAAMzozPVyzOroqbku82UstORpGjTribqC4AACAPwAAgD8a3kM9X5mcP8JdiD7V7Be/7/JGPWyxID4AAAAAAAAAAM1cOzwuvIk/dnUGvMtHC798FZW6AyWXvQAAAAAAAAAA0IuQvotaAz9uSYw9KYnjvkxAh75zYm08AAAAAAAAAACNL5c9SwX2PQJxbr5UmVe+z9uyOhiF5bwAAAAAAAAAADNzvrmwILM/67oWvd6sAr+uMeA5SpIIPAAAAAAAAAAAmnu+vI8ec7pGPRC0zYcCr0GedDm9Q7AzAACAPwAAgD8z0aM9hSutubWkXDoNU/o0HzXpu1Nxg7kAAIA/AACAP82KizxIi4m6ku0nuqRsF7VU6uK6c3BDOQAAgD8AAIA/c2SfPaJqCj6jI6y8K21AvlcUez1utRQ9AAAAAAAAAAAzv9Q8w4lCutneojXzZJ0wUvXfusZ9u7QAAIA/AACAP+arvj1csH49eDpSvioahb7ztOi9lDiLPAAAAAAAAAAAZh5IPMPdbLq2xCu4TXXNsuNDELvCjEQ3AACAPwAAgD/NIC49bAzKux06jbxvR6M8A28XPW6/iL0AAIA/AACAP5rJTbyk1Ay7PhN1vBwFiDx7I9i7pvJrPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAEAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVaBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMII2k3+hhoc0CUhpRSlIwBbJRL4YwBdJRHQI7afNX5nDl1fZQoaAZoCWgPQwjxun7B7nRuQJSGlFKUaBVL7GgWR0CO2r/EwWWQdX2UKGgGaAloD0MIz9kCQuuxbkCUhpRSlGgVTRgBaBZHQI7cBMxoIv91fZQoaAZoCWgPQwjON6J71tdxQJSGlFKUaBVNPQFoFkdAjt5aUaAFxHV9lChoBmgJaA9DCM4avK9KDnNAlIaUUpRoFU0LAWgWR0CO3tBmf5DadX2UKGgGaAloD0MIWYrkKwGmcUCUhpRSlGgVTScBaBZHQI7gSdJ8OTd1fZQoaAZoCWgPQwjiWYKMAEZxQJSGlFKUaBVL+mgWR0CO4F8wYcebdX2UKGgGaAloD0MIVik908tqcUCUhpRSlGgVTRMBaBZHQI7hYkcCHRF1fZQoaAZoCWgPQwizJasiXDZuQJSGlFKUaBVNfAFoFkdAjuKR7RfF73V9lChoBmgJaA9DCORNfotOKnNAlIaUUpRoFU01AWgWR0CO4qo99tuUdX2UKGgGaAloD0MIVcA9z5/icUCUhpRSlGgVTY8BaBZHQI7kCRp1zQx1fZQoaAZoCWgPQwhq3JvfsH9xQJSGlFKUaBVNHgFoFkdAjuUBWo3rEHV9lChoBmgJaA9DCPeTMT7MuW9AlIaUUpRoFU0FAWgWR0CO5Y+9rXUZdX2UKGgGaAloD0MIxysQPSlKcECUhpRSlGgVTQkBaBZHQI7pE3uNPxh1fZQoaAZoCWgPQwjEsplD0sJuQJSGlFKUaBVNOgFoFkdAjuxJ/wy6+XV9lChoBmgJaA9DCKMBvAUSMnFAlIaUUpRoFU0gAWgWR0CO7GCsfaHsdX2UKGgGaAloD0MIiX0CKIaPckCUhpRSlGgVTVABaBZHQI7tNkz41xd1fZQoaAZoCWgPQwjmWUkrvphvQJSGlFKUaBVNWAFoFkdAju6Z4W1twnV9lChoBmgJaA9DCG8p54u91U1AlIaUUpRoFUunaBZHQI7vPBHkLhJ1fZQoaAZoCWgPQwg+0AoMGXVyQJSGlFKUaBVNUAFoFkdAjvJ5CWu5jHV9lChoBmgJaA9DCOp6ouvCqHFAlIaUUpRoFU0+AWgWR0CO852ovSMMdX2UKGgGaAloD0MIRiQKLetNbUCUhpRSlGgVTQkBaBZHQI70zHKfWc11fZQoaAZoCWgPQwidSDDVTPdwQJSGlFKUaBVNUQFoFkdAjvTiiRGMGXV9lChoBmgJaA9DCPziUpW2cW9AlIaUUpRoFU17AWgWR0CO9esXizcAdX2UKGgGaAloD0MIUz4EVeN1cECUhpRSlGgVTd0BaBZHQI72ShakhzN1fZQoaAZoCWgPQwjqy9JOzcVxQJSGlFKUaBVNQgFoFkdAjvaY9xIatXV9lChoBmgJaA9DCKW+LO1UmHFAlIaUUpRoFU1RAWgWR0CO913xFy7xdX2UKGgGaAloD0MIV9C0xMoDUUCUhpRSlGgVS6loFkdAjvhP9UCJXXV9lChoBmgJaA9DCPImv0UnznFAlIaUUpRoFU18AWgWR0CO+FxyXD3udX2UKGgGaAloD0MIDcfzGVDTcECUhpRSlGgVS/FoFkdAjvixVIZqEnV9lChoBmgJaA9DCFPNrKVAtHJAlIaUUpRoFU0JAWgWR0CO/kV4X40udX2UKGgGaAloD0MIHO244TeUcUCUhpRSlGgVTTsBaBZHQI7/Q/HHWBl1fZQoaAZoCWgPQwjQmbSpOlxuQJSGlFKUaBVNPAFoFkdAjv9yt/4Ir3V9lChoBmgJaA9DCCxn74w26XFAlIaUUpRoFU0oAWgWR0CPALVrAP/adX2UKGgGaAloD0MIK/nYXWBBcECUhpRSlGgVTRYBaBZHQI8DdroGIKt1fZQoaAZoCWgPQwh/aVGfpPJwQJSGlFKUaBVNGQFoFkdAjwTWCdz4lHV9lChoBmgJaA9DCAnDgCXXdnJAlIaUUpRoFU0eAWgWR0CPBRXvH93sdX2UKGgGaAloD0MI3sZmRyoab0CUhpRSlGgVTUABaBZHQI8FNU6xPft1fZQoaAZoCWgPQwgabsDnhwdyQJSGlFKUaBVNFQJoFkdAjwXcQiA2AHV9lChoBmgJaA9DCIBG6dI/Q25AlIaUUpRoFU0kAWgWR0CPBnatcObzdX2UKGgGaAloD0MIrDsW22QJcECUhpRSlGgVTQABaBZHQI8G/EVFhG91fZQoaAZoCWgPQwibkqzDkY9yQJSGlFKUaBVNPgFoFkdAjwhO4oZydXV9lChoBmgJaA9DCKOutffpGXJAlIaUUpRoFU0aAWgWR0CPCOqJdjXndX2UKGgGaAloD0MIoYLDC6LqbUCUhpRSlGgVTT0BaBZHQI8JQ9aEBbR1fZQoaAZoCWgPQwhf61IjdMFvQJSGlFKUaBVNZAFoFkdAjwqBDohY/3V9lChoBmgJaA9DCNwvn6zY23JAlIaUUpRoFU1QAWgWR0CPL7hnanJldX2UKGgGaAloD0MIoP6z5oe5cUCUhpRSlGgVS/hoFkdAjzERTjvNNnV9lChoBmgJaA9DCMo329zY3HBAlIaUUpRoFU0EAWgWR0CPMm9wm3OOdX2UKGgGaAloD0MI1PIDV/lZbUCUhpRSlGgVTQgBaBZHQI8ywuqWC3B1fZQoaAZoCWgPQwgIHt/edQZyQJSGlFKUaBVL4mgWR0CPNB3ljmSydX2UKGgGaAloD0MIHXbfMTxacECUhpRSlGgVS9xoFkdAjzXcSoOx0XV9lChoBmgJaA9DCHbicrwCJ21AlIaUUpRoFUv/aBZHQI83RciW3Sd1fZQoaAZoCWgPQwiWPnRBvYhxQJSGlFKUaBVNVwFoFkdAjzhtEPUaynV9lChoBmgJaA9DCFrVko6yFnBAlIaUUpRoFUv1aBZHQI84qgoPTXt1fZQoaAZoCWgPQwitwmaAC5hzQJSGlFKUaBVNGQFoFkdAjzjN+9allHV9lChoBmgJaA9DCNpXHqSn8XFAlIaUUpRoFUvzaBZHQI85x4Y77sR1fZQoaAZoCWgPQwip2QOtAM5wQJSGlFKUaBVL12gWR0CPOqA4GUwBdX2UKGgGaAloD0MIjdMQVXhYb0CUhpRSlGgVS/loFkdAjzq2exwAEXV9lChoBmgJaA9DCPzDlh7N2XNAlIaUUpRoFU1SAWgWR0CPO5hGYrrgdX2UKGgGaAloD0MIt+9Rf31gckCUhpRSlGgVTTkBaBZHQI87uGRFI/Z1fZQoaAZoCWgPQwhJLv8hPbBwQJSGlFKUaBVNEQFoFkdAjzwuBtk4FXV9lChoBmgJaA9DCHqM8swLZHFAlIaUUpRoFUvnaBZHQI8+ndM0xdp1fZQoaAZoCWgPQwiTjnIwG3duQJSGlFKUaBVNIAFoFkdAjz6wqZtvXXV9lChoBmgJaA9DCCo3UUuz0nFAlIaUUpRoFU0LAWgWR0CPPwF36hxpdX2UKGgGaAloD0MIYmU08nmhc0CUhpRSlGgVTRwBaBZHQI9BlAVwgkl1fZQoaAZoCWgPQwi5MxMMZ9RxQJSGlFKUaBVL8WgWR0CPQmD8tPHldX2UKGgGaAloD0MIBeEKKFQ8ckCUhpRSlGgVS/FoFkdAj0OoMBp5/3V9lChoBmgJaA9DCIo+H2VEc3BAlIaUUpRoFUvhaBZHQI9D9aOgg5l1fZQoaAZoCWgPQwhmZmZmpqlxQJSGlFKUaBVNMQFoFkdAj0QgTIvJzXV9lChoBmgJaA9DCIavr3WpA3JAlIaUUpRoFU0SAWgWR0CPRsGwiaAndX2UKGgGaAloD0MIMc9KWvEgb0CUhpRSlGgVS/NoFkdAj0brzXjEN3V9lChoBmgJaA9DCFn7O9sjpHJAlIaUUpRoFU0iAWgWR0CPR0tfXwsodX2UKGgGaAloD0MIkZighi+kcECUhpRSlGgVS/xoFkdAj0d4Ds+mnHV9lChoBmgJaA9DCCCaeXLNym9AlIaUUpRoFU0AAWgWR0CPSTzRx95RdX2UKGgGaAloD0MI24e85aokckCUhpRSlGgVTTEBaBZHQI9JUD+zdDZ1fZQoaAZoCWgPQwgi36XUZXVyQJSGlFKUaBVNNQFoFkdAj0sY/Vy3kXV9lChoBmgJaA9DCHanO0+8QXJAlIaUUpRoFU0FAWgWR0CPS/uwX668dX2UKGgGaAloD0MIjLysiYW1c0CUhpRSlGgVTUMBaBZHQI9L9cSoOx11fZQoaAZoCWgPQwgd6KG2TbRxQJSGlFKUaBVNLQFoFkdAj058t5D7ZXV9lChoBmgJaA9DCFh1VgsslnBAlIaUUpRoFUvXaBZHQI9PAdwNsnB1fZQoaAZoCWgPQwjhCb3+pNhtQJSGlFKUaBVNCAFoFkdAj1AWTX8O1HV9lChoBmgJaA9DCHk+A+pNJXJAlIaUUpRoFU0OAWgWR0CPUkZ4Oc2BdX2UKGgGaAloD0MILJyk+eNRcECUhpRSlGgVTYUBaBZHQI9TEQ/X5Fh1fZQoaAZoCWgPQwhfl+E/HU9yQJSGlFKUaBVL9GgWR0CPU5oyKvV3dX2UKGgGaAloD0MIba6a54g4c0CUhpRSlGgVTVoBaBZHQI9T9n9Nvfl1fZQoaAZoCWgPQwi9pgcFZVRyQJSGlFKUaBVNCwFoFkdAj1V7+1jRUnV9lChoBmgJaA9DCGUZ4lgXQW9AlIaUUpRoFU0cAWgWR0CPVrKpT/ACdX2UKGgGaAloD0MInyCx3f2+cECUhpRSlGgVTR8BaBZHQI9ZQaWHDaZ1fZQoaAZoCWgPQwgx0LUvoEpuQJSGlFKUaBVNVgFoFkdAj1nJZOi35XV9lChoBmgJaA9DCCrJOhwdk3JAlIaUUpRoFU0xAWgWR0CPWjrcj7hvdX2UKGgGaAloD0MIc2cmGA75cUCUhpRSlGgVS/doFkdAj1o0W2w3YXV9lChoBmgJaA9DCNZSQNr/625AlIaUUpRoFUv3aBZHQI9aLsOXmeV1fZQoaAZoCWgPQwiJCtXNRTZvQJSGlFKUaBVNOAFoFkdAj1yKf4AS4HV9lChoBmgJaA9DCIif/x582nBAlIaUUpRoFUv8aBZHQI9c2m78Nx51fZQoaAZoCWgPQwjr46Hv7nxwQJSGlFKUaBVNAgFoFkdAj12bpV0cO3V9lChoBmgJaA9DCNaNd0dGHXFAlIaUUpRoFU0jAmgWR0CPYVw0fozOdX2UKGgGaAloD0MIOey+Y3gObkCUhpRSlGgVTQMBaBZHQI9icpw0fo11fZQoaAZoCWgPQwhEUDV69flyQJSGlFKUaBVNKgFoFkdAj2Pg2qDK5nV9lChoBmgJaA9DCIHrihlhxHBAlIaUUpRoFU0hAWgWR0CPZfkCmuTzdX2UKGgGaAloD0MIOey+Y/jTbkCUhpRSlGgVTWcBaBZHQI9m6zkZJkJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.17.3"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c3842772b64cd282b4d7229818d3582a0ebd6aae57ffaee4992e8caf12c4d06
3
+ size 147176
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa45fad34c0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa45fad3550>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa45fad35e0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa45fad3670>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fa45fad3700>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fa45fad3790>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa45fad3820>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fa45fad38b0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa45fad3940>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa45fad39d0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa45fad3a60>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fa45fb3bcc0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
26
+ "dtype": "float32",
27
+ "shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=",
39
+ "n": 4,
40
+ "shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1673105228187741418,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJCtlT46bFs/AgMCvr6+v74zbSo+sXQdvgAAAAAAAAAAMzozPVyzOroqbku82UstORpGjTribqC4AACAPwAAgD8a3kM9X5mcP8JdiD7V7Be/7/JGPWyxID4AAAAAAAAAAM1cOzwuvIk/dnUGvMtHC798FZW6AyWXvQAAAAAAAAAA0IuQvotaAz9uSYw9KYnjvkxAh75zYm08AAAAAAAAAACNL5c9SwX2PQJxbr5UmVe+z9uyOhiF5bwAAAAAAAAAADNzvrmwILM/67oWvd6sAr+uMeA5SpIIPAAAAAAAAAAAmnu+vI8ec7pGPRC0zYcCr0GedDm9Q7AzAACAPwAAgD8z0aM9hSutubWkXDoNU/o0HzXpu1Nxg7kAAIA/AACAP82KizxIi4m6ku0nuqRsF7VU6uK6c3BDOQAAgD8AAIA/c2SfPaJqCj6jI6y8K21AvlcUez1utRQ9AAAAAAAAAAAzv9Q8w4lCutneojXzZJ0wUvXfusZ9u7QAAIA/AACAP+arvj1csH49eDpSvioahb7ztOi9lDiLPAAAAAAAAAAAZh5IPMPdbLq2xCu4TXXNsuNDELvCjEQ3AACAPwAAgD/NIC49bAzKux06jbxvR6M8A28XPW6/iL0AAIA/AACAP5rJTbyk1Ay7PhN1vBwFiDx7I9i7pvJrPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAEAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVaBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMII2k3+hhoc0CUhpRSlIwBbJRL4YwBdJRHQI7afNX5nDl1fZQoaAZoCWgPQwjxun7B7nRuQJSGlFKUaBVL7GgWR0CO2r/EwWWQdX2UKGgGaAloD0MIz9kCQuuxbkCUhpRSlGgVTRgBaBZHQI7cBMxoIv91fZQoaAZoCWgPQwjON6J71tdxQJSGlFKUaBVNPQFoFkdAjt5aUaAFxHV9lChoBmgJaA9DCM4avK9KDnNAlIaUUpRoFU0LAWgWR0CO3tBmf5DadX2UKGgGaAloD0MIWYrkKwGmcUCUhpRSlGgVTScBaBZHQI7gSdJ8OTd1fZQoaAZoCWgPQwjiWYKMAEZxQJSGlFKUaBVL+mgWR0CO4F8wYcebdX2UKGgGaAloD0MIVik908tqcUCUhpRSlGgVTRMBaBZHQI7hYkcCHRF1fZQoaAZoCWgPQwizJasiXDZuQJSGlFKUaBVNfAFoFkdAjuKR7RfF73V9lChoBmgJaA9DCORNfotOKnNAlIaUUpRoFU01AWgWR0CO4qo99tuUdX2UKGgGaAloD0MIVcA9z5/icUCUhpRSlGgVTY8BaBZHQI7kCRp1zQx1fZQoaAZoCWgPQwhq3JvfsH9xQJSGlFKUaBVNHgFoFkdAjuUBWo3rEHV9lChoBmgJaA9DCPeTMT7MuW9AlIaUUpRoFU0FAWgWR0CO5Y+9rXUZdX2UKGgGaAloD0MIxysQPSlKcECUhpRSlGgVTQkBaBZHQI7pE3uNPxh1fZQoaAZoCWgPQwjEsplD0sJuQJSGlFKUaBVNOgFoFkdAjuxJ/wy6+XV9lChoBmgJaA9DCKMBvAUSMnFAlIaUUpRoFU0gAWgWR0CO7GCsfaHsdX2UKGgGaAloD0MIiX0CKIaPckCUhpRSlGgVTVABaBZHQI7tNkz41xd1fZQoaAZoCWgPQwjmWUkrvphvQJSGlFKUaBVNWAFoFkdAju6Z4W1twnV9lChoBmgJaA9DCG8p54u91U1AlIaUUpRoFUunaBZHQI7vPBHkLhJ1fZQoaAZoCWgPQwg+0AoMGXVyQJSGlFKUaBVNUAFoFkdAjvJ5CWu5jHV9lChoBmgJaA9DCOp6ouvCqHFAlIaUUpRoFU0+AWgWR0CO852ovSMMdX2UKGgGaAloD0MIRiQKLetNbUCUhpRSlGgVTQkBaBZHQI70zHKfWc11fZQoaAZoCWgPQwidSDDVTPdwQJSGlFKUaBVNUQFoFkdAjvTiiRGMGXV9lChoBmgJaA9DCPziUpW2cW9AlIaUUpRoFU17AWgWR0CO9esXizcAdX2UKGgGaAloD0MIUz4EVeN1cECUhpRSlGgVTd0BaBZHQI72ShakhzN1fZQoaAZoCWgPQwjqy9JOzcVxQJSGlFKUaBVNQgFoFkdAjvaY9xIatXV9lChoBmgJaA9DCKW+LO1UmHFAlIaUUpRoFU1RAWgWR0CO913xFy7xdX2UKGgGaAloD0MIV9C0xMoDUUCUhpRSlGgVS6loFkdAjvhP9UCJXXV9lChoBmgJaA9DCPImv0UnznFAlIaUUpRoFU18AWgWR0CO+FxyXD3udX2UKGgGaAloD0MIDcfzGVDTcECUhpRSlGgVS/FoFkdAjvixVIZqEnV9lChoBmgJaA9DCFPNrKVAtHJAlIaUUpRoFU0JAWgWR0CO/kV4X40udX2UKGgGaAloD0MIHO244TeUcUCUhpRSlGgVTTsBaBZHQI7/Q/HHWBl1fZQoaAZoCWgPQwjQmbSpOlxuQJSGlFKUaBVNPAFoFkdAjv9yt/4Ir3V9lChoBmgJaA9DCCxn74w26XFAlIaUUpRoFU0oAWgWR0CPALVrAP/adX2UKGgGaAloD0MIK/nYXWBBcECUhpRSlGgVTRYBaBZHQI8DdroGIKt1fZQoaAZoCWgPQwh/aVGfpPJwQJSGlFKUaBVNGQFoFkdAjwTWCdz4lHV9lChoBmgJaA9DCAnDgCXXdnJAlIaUUpRoFU0eAWgWR0CPBRXvH93sdX2UKGgGaAloD0MI3sZmRyoab0CUhpRSlGgVTUABaBZHQI8FNU6xPft1fZQoaAZoCWgPQwgabsDnhwdyQJSGlFKUaBVNFQJoFkdAjwXcQiA2AHV9lChoBmgJaA9DCIBG6dI/Q25AlIaUUpRoFU0kAWgWR0CPBnatcObzdX2UKGgGaAloD0MIrDsW22QJcECUhpRSlGgVTQABaBZHQI8G/EVFhG91fZQoaAZoCWgPQwibkqzDkY9yQJSGlFKUaBVNPgFoFkdAjwhO4oZydXV9lChoBmgJaA9DCKOutffpGXJAlIaUUpRoFU0aAWgWR0CPCOqJdjXndX2UKGgGaAloD0MIoYLDC6LqbUCUhpRSlGgVTT0BaBZHQI8JQ9aEBbR1fZQoaAZoCWgPQwhf61IjdMFvQJSGlFKUaBVNZAFoFkdAjwqBDohY/3V9lChoBmgJaA9DCNwvn6zY23JAlIaUUpRoFU1QAWgWR0CPL7hnanJldX2UKGgGaAloD0MIoP6z5oe5cUCUhpRSlGgVS/hoFkdAjzERTjvNNnV9lChoBmgJaA9DCMo329zY3HBAlIaUUpRoFU0EAWgWR0CPMm9wm3OOdX2UKGgGaAloD0MI1PIDV/lZbUCUhpRSlGgVTQgBaBZHQI8ywuqWC3B1fZQoaAZoCWgPQwgIHt/edQZyQJSGlFKUaBVL4mgWR0CPNB3ljmSydX2UKGgGaAloD0MIHXbfMTxacECUhpRSlGgVS9xoFkdAjzXcSoOx0XV9lChoBmgJaA9DCHbicrwCJ21AlIaUUpRoFUv/aBZHQI83RciW3Sd1fZQoaAZoCWgPQwiWPnRBvYhxQJSGlFKUaBVNVwFoFkdAjzhtEPUaynV9lChoBmgJaA9DCFrVko6yFnBAlIaUUpRoFUv1aBZHQI84qgoPTXt1fZQoaAZoCWgPQwitwmaAC5hzQJSGlFKUaBVNGQFoFkdAjzjN+9allHV9lChoBmgJaA9DCNpXHqSn8XFAlIaUUpRoFUvzaBZHQI85x4Y77sR1fZQoaAZoCWgPQwip2QOtAM5wQJSGlFKUaBVL12gWR0CPOqA4GUwBdX2UKGgGaAloD0MIjdMQVXhYb0CUhpRSlGgVS/loFkdAjzq2exwAEXV9lChoBmgJaA9DCPzDlh7N2XNAlIaUUpRoFU1SAWgWR0CPO5hGYrrgdX2UKGgGaAloD0MIt+9Rf31gckCUhpRSlGgVTTkBaBZHQI87uGRFI/Z1fZQoaAZoCWgPQwhJLv8hPbBwQJSGlFKUaBVNEQFoFkdAjzwuBtk4FXV9lChoBmgJaA9DCHqM8swLZHFAlIaUUpRoFUvnaBZHQI8+ndM0xdp1fZQoaAZoCWgPQwiTjnIwG3duQJSGlFKUaBVNIAFoFkdAjz6wqZtvXXV9lChoBmgJaA9DCCo3UUuz0nFAlIaUUpRoFU0LAWgWR0CPPwF36hxpdX2UKGgGaAloD0MIYmU08nmhc0CUhpRSlGgVTRwBaBZHQI9BlAVwgkl1fZQoaAZoCWgPQwi5MxMMZ9RxQJSGlFKUaBVL8WgWR0CPQmD8tPHldX2UKGgGaAloD0MIBeEKKFQ8ckCUhpRSlGgVS/FoFkdAj0OoMBp5/3V9lChoBmgJaA9DCIo+H2VEc3BAlIaUUpRoFUvhaBZHQI9D9aOgg5l1fZQoaAZoCWgPQwhmZmZmpqlxQJSGlFKUaBVNMQFoFkdAj0QgTIvJzXV9lChoBmgJaA9DCIavr3WpA3JAlIaUUpRoFU0SAWgWR0CPRsGwiaAndX2UKGgGaAloD0MIMc9KWvEgb0CUhpRSlGgVS/NoFkdAj0brzXjEN3V9lChoBmgJaA9DCFn7O9sjpHJAlIaUUpRoFU0iAWgWR0CPR0tfXwsodX2UKGgGaAloD0MIkZighi+kcECUhpRSlGgVS/xoFkdAj0d4Ds+mnHV9lChoBmgJaA9DCCCaeXLNym9AlIaUUpRoFU0AAWgWR0CPSTzRx95RdX2UKGgGaAloD0MI24e85aokckCUhpRSlGgVTTEBaBZHQI9JUD+zdDZ1fZQoaAZoCWgPQwgi36XUZXVyQJSGlFKUaBVNNQFoFkdAj0sY/Vy3kXV9lChoBmgJaA9DCHanO0+8QXJAlIaUUpRoFU0FAWgWR0CPS/uwX668dX2UKGgGaAloD0MIjLysiYW1c0CUhpRSlGgVTUMBaBZHQI9L9cSoOx11fZQoaAZoCWgPQwgd6KG2TbRxQJSGlFKUaBVNLQFoFkdAj058t5D7ZXV9lChoBmgJaA9DCFh1VgsslnBAlIaUUpRoFUvXaBZHQI9PAdwNsnB1fZQoaAZoCWgPQwjhCb3+pNhtQJSGlFKUaBVNCAFoFkdAj1AWTX8O1HV9lChoBmgJaA9DCHk+A+pNJXJAlIaUUpRoFU0OAWgWR0CPUkZ4Oc2BdX2UKGgGaAloD0MILJyk+eNRcECUhpRSlGgVTYUBaBZHQI9TEQ/X5Fh1fZQoaAZoCWgPQwhfl+E/HU9yQJSGlFKUaBVL9GgWR0CPU5oyKvV3dX2UKGgGaAloD0MIba6a54g4c0CUhpRSlGgVTVoBaBZHQI9T9n9Nvfl1fZQoaAZoCWgPQwi9pgcFZVRyQJSGlFKUaBVNCwFoFkdAj1V7+1jRUnV9lChoBmgJaA9DCGUZ4lgXQW9AlIaUUpRoFU0cAWgWR0CPVrKpT/ACdX2UKGgGaAloD0MInyCx3f2+cECUhpRSlGgVTR8BaBZHQI9ZQaWHDaZ1fZQoaAZoCWgPQwgx0LUvoEpuQJSGlFKUaBVNVgFoFkdAj1nJZOi35XV9lChoBmgJaA9DCCrJOhwdk3JAlIaUUpRoFU0xAWgWR0CPWjrcj7hvdX2UKGgGaAloD0MIc2cmGA75cUCUhpRSlGgVS/doFkdAj1o0W2w3YXV9lChoBmgJaA9DCNZSQNr/625AlIaUUpRoFUv3aBZHQI9aLsOXmeV1fZQoaAZoCWgPQwiJCtXNRTZvQJSGlFKUaBVNOAFoFkdAj1yKf4AS4HV9lChoBmgJaA9DCIif/x582nBAlIaUUpRoFUv8aBZHQI9c2m78Nx51fZQoaAZoCWgPQwjr46Hv7nxwQJSGlFKUaBVNAgFoFkdAj12bpV0cO3V9lChoBmgJaA9DCNaNd0dGHXFAlIaUUpRoFU0jAmgWR0CPYVw0fozOdX2UKGgGaAloD0MIOey+Y3gObkCUhpRSlGgVTQMBaBZHQI9icpw0fo11fZQoaAZoCWgPQwhEUDV69flyQJSGlFKUaBVNKgFoFkdAj2Pg2qDK5nV9lChoBmgJaA9DCIHrihlhxHBAlIaUUpRoFU0hAWgWR0CPZfkCmuTzdX2UKGgGaAloD0MIOey+Y/jTbkCUhpRSlGgVTWcBaBZHQI9m6zkZJkJ1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc747bdc7919b191dbcdf08d85e1b63c77e4f4378cd99849ad7d7f76a8bb8141
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc186c3196c42f2257d144248669ff4c3d4259a773c95f822c969341ddd29d58
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.17.3
replay.mp4 ADDED
Binary file (225 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 265.1518665621324, "std_reward": 20.406636298116606, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-07T15:44:14.658818"}