File size: 7,830 Bytes
7e3196d cdc82d5 7e3196d b07d250 7e3196d b07d250 7e3196d 1558abe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
---
license: apache-2.0
---
# KeyBART
KeyBART as described in "Learning Rich Representations of Keyphrase from Text" published in the Findings of NAACL 2022 (https://aclanthology.org/2022.findings-naacl.67.pdf), pre-trains a BART-based architecture to produce a concatenated sequence of keyphrases in the CatSeqD format.
We provide some examples on Downstream Evaluations setups and and also how it can be used for Text-to-Text Generation in a zero-shot setting.
## Downstream Evaluation
### Keyphrase Generation
```
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("bloomberg/KeyBART")
model = AutoModelForSeq2SeqLM.from_pretrained("bloomberg/KeyBART")
from datasets import load_dataset
dataset = load_dataset("midas/kp20k")
```
Reported Results:
#### Present Keyphrase Generation
| | Inspec | | NUS | | Krapivin | | SemEval | | KP20k | |
|---------------|--------|-------|-------|-------|----------|-------|---------|-------|-------|-------|
| Model | F1@5 | F1@M | F1@5 | F1@M | F1@5 | F1@M | F1@5 | F1@M | F1@5 | F1@M |
| catSeq | 22.5 | 26.2 | 32.3 | 39.7 | 26.9 | 35.4 | 24.2 | 28.3 | 29.1 | 36.7 |
| catSeqTG | 22.9 | 27 | 32.5 | 39.3 | 28.2 | 36.6 | 24.6 | 29.0 | 29.2 | 36.6 |
| catSeqTG-2RF1 | 25.3 | 30.1 | 37.5 | 43.3 | 30 | 36.9 | 28.7 | 32.9 | 32.1 | 38.6 |
| GANMR | 25.8 | 29.9 | 34.8 | 41.7 | 28.8 | 36.9 | N/A | N/A | 30.3 | 37.8 |
| ExHiRD-h | 25.3 | 29.1 | N/A | N/A | 28.6 | 34.7 | 28.4 | 33.5 | 31.1 | 37.4 |
| Transformer (Ye et al., 2021) | 28.15 | 32.56 | 37.07 | 41.91 | 31.58 | 36.55 | 28.71 | 32.52 | 33.21 | 37.71 |
| BART* | 23.59 | 28.46 | 35.00 | 42.65 | 26.91 | 35.37 | 26.72 | 31.91 | 29.25 | 37.51 |
| KeyBART-DOC* | 24.42 | 29.57 | 31.37 | 39.24 | 24.21 | 32.60 | 24.69 | 30.50 | 28.82 | 37.59 |
| KeyBART* | 24.49 | 29.69 | 34.77 | 43.57 | 29.24 | 38.62 | 27.47 | 33.54 | 30.71 | 39.76 |
| KeyBART* (Zero-shot) | 30.72 | 36.89 | 18.86 | 21.67 | 18.35 | 20.46 | 20.25 | 25.82 | 12.57 | 15.41 |
#### Absent Keyphrase Generation
| | Inspec | | NUS | | Krapivin | | SemEval | | KP20k | |
|---------------|--------|------|------|------|----------|------|---------|------|-------|------|
| Model | F1@5 | F1@M | F1@5 | F1@M | F1@5 | F1@M | F1@5 | F1@M | F1@5 | F1@M |
| catSeq | 0.4 | 0.8 | 1.6 | 2.8 | 1.8 | 3.6 | 1.6 | 2.8 | 1.5 | 3.2 |
| catSeqTG | 0.5 | 1.1 | 1.1 | 1.8 | 1.8 | 3.4 | 1.1 | 1.8 | 1.5 | 3.2 |
| catSeqTG-2RF1 | 1.2 | 2.1 | 1.9 | 3.1 | 3.0 | 5.3 | 2.1 | 3.0 | 2.7 | 5.0 |
| GANMR | 1.3 | 1.9 | 2.6 | 3.8 | 4.2 | 5.7 | N/A | N/A | 3.2 | 4.5 |
| ExHiRD-h | 1.1 | 2.2 | N/A | N/A | 2.2 | 4.3 | 1.7 | 2.5 | 1.6 | 3.2 |
| Transformer (Ye et al., 2021) | 1.02 | 1.94 | 2.82 | 4.82 | 3.21 | 6.04 | 2.05 | 2.33 | 2.31 | 4.61 |
| BART* | 1.08 | 1.96 | 1.80 | 2.75 | 2.59 | 4.91 | 1.34 | 1.75 | 1.77 | 3.56 |
| KeyBART-DOC* | 0.99 | 2.03 | 1.39 | 2.74 | 2.40 | 4.58 | 1.07 | 1.39 | 1.69 | 3.38 |
| KeyBART* | 0.95 | 1.81 | 1.23 | 1.90 | 3.09 | 6.08 | 1.96 | 2.65 | 2.03 | 4.26 |
| KeyBART* (Zero-shot) | 1.83 | 2.92 | 1.46 | 2.19 | 1.29 | 2.09 | 1.12 | 1.45 | 0.70 | 1.14 |
### Abstractive Summarization
```
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("bloomberg/KeyBART")
model = AutoModelForSeq2SeqLM.from_pretrained("bloomberg/KeyBART")
from datasets import load_dataset
dataset = load_dataset("cnn_dailymail")
```
Reported Results:
| Model | R1 | R2 | RL |
|--------------|-------|-------|-------|
| BART (Lewis et al., 2019) | 44.16 | 21.28 | 40.9 |
| BART* | 42.93 | 20.12 | 39.72 |
| KeyBART-DOC* | 42.92 | 20.07 | 39.69 |
| KeyBART* | 43.10 | 20.26 | 39.90 |
## Zero-shot settings
```
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("bloomberg/KeyBART")
model = AutoModelForSeq2SeqLM.from_pretrained("bloomberg/KeyBART")
```
Alternatively use the Hosted Inference API console provided in https://huggingface.co/bloomberg/KeyBART
Sample Zero Shot result:
```
Input: In this work, we explore how to learn task specific language models aimed towards learning rich representation of keyphrases from text documents.
We experiment with different masking strategies for pre-training transformer language models (LMs) in discriminative as well as generative settings.
In the discriminative setting, we introduce a new pre-training objective - Keyphrase Boundary Infilling with Replacement (KBIR),
showing large gains in performance (upto 9.26 points in F1) over SOTA, when LM pre-trained using KBIR is fine-tuned for the task of keyphrase extraction.
In the generative setting, we introduce a new pre-training setup for BART - KeyBART, that reproduces the keyphrases related to the input text in the CatSeq
format, instead of the denoised original input. This also led to gains in performance (upto 4.33 points in F1@M) over SOTA for keyphrase generation.
Additionally, we also fine-tune the pre-trained language models on named entity recognition (NER), question answering (QA), relation extraction (RE),
abstractive summarization and achieve comparable performance with that of the SOTA, showing that learning rich representation of keyphrases is indeed beneficial
for many other fundamental NLP tasks.
Output: language model;keyphrase generation;new pre-training objective;pre-training setup;
```
## Citation
Please cite this work using the following BibTeX entry:
@inproceedings{kulkarni-etal-2022-learning,
title = "Learning Rich Representation of Keyphrases from Text",
author = "Kulkarni, Mayank and
Mahata, Debanjan and
Arora, Ravneet and
Bhowmik, Rajarshi",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2022",
month = jul,
year = "2022",
address = "Seattle, United States",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.findings-naacl.67",
doi = "10.18653/v1/2022.findings-naacl.67",
pages = "891--906",
abstract = "In this work, we explore how to train task-specific language models aimed towards learning rich representation of keyphrases from text documents. We experiment with different masking strategies for pre-training transformer language models (LMs) in discriminative as well as generative settings. In the discriminative setting, we introduce a new pre-training objective - Keyphrase Boundary Infilling with Replacement (KBIR), showing large gains in performance (upto 8.16 points in F1) over SOTA, when the LM pre-trained using KBIR is fine-tuned for the task of keyphrase extraction. In the generative setting, we introduce a new pre-training setup for BART - KeyBART, that reproduces the keyphrases related to the input text in the CatSeq format, instead of the denoised original input. This also led to gains in performance (upto 4.33 points in F1@M) over SOTA for keyphrase generation. Additionally, we also fine-tune the pre-trained language models on named entity recognition (NER), question answering (QA), relation extraction (RE), abstractive summarization and achieve comparable performance with that of the SOTA, showing that learning rich representation of keyphrases is indeed beneficial for many other fundamental NLP tasks.",
}
Please direct all questions to dpreotiucpie@bloomberg.net |