File size: 2,670 Bytes
e3b7b2e 7ae6a3f 07575de 50b3e77 e3b7b2e 07575de e3b7b2e 764beea e3b7b2e 764beea e3b7b2e 764beea e3b7b2e 7ae6a3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: cybersecurity-ner
results: []
datasets:
- bnsapa/cybersecurity-ner
language:
- en
library_name: transformers
widget:
- text: "microsoft and google are working to build AI models"
- text: "Having obtained the necessary permissions from the user, Riltok contacts its C&C server."
- text: "Tweets in Twitter can be controversial"
- text: "xyz is custom virus gains access to the messages in the victim's mobile and contacts the attacker's server"
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# cybersecurity-ner
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the [cybersecurity-ner](https://huggingface.co/datasets/bnsapa/cybersecurity-ner) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2196
- Precision: 0.7942
- Recall: 0.7925
- F1: 0.7933
- Accuracy: 0.9508
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 167 | 0.2492 | 0.6870 | 0.7406 | 0.7128 | 0.9293 |
| No log | 2.0 | 334 | 0.2026 | 0.7733 | 0.7346 | 0.7534 | 0.9420 |
| 0.2118 | 3.0 | 501 | 0.1895 | 0.7735 | 0.7934 | 0.7833 | 0.9493 |
| 0.2118 | 4.0 | 668 | 0.1834 | 0.7785 | 0.8189 | 0.7982 | 0.9511 |
| 0.2118 | 5.0 | 835 | 0.2060 | 0.8113 | 0.7965 | 0.8039 | 0.9522 |
| 0.0507 | 6.0 | 1002 | 0.2153 | 0.7692 | 0.8226 | 0.7950 | 0.9511 |
| 0.0507 | 7.0 | 1169 | 0.2141 | 0.7866 | 0.7962 | 0.7914 | 0.9507 |
| 0.0507 | 8.0 | 1336 | 0.2196 | 0.7942 | 0.7925 | 0.7933 | 0.9508 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0 |