File size: 13,738 Bytes
162146e |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa2f632b2e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa2f632b370>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa2f632b400>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa2f632b490>", "_build": "<function ActorCriticPolicy._build at 0x7fa2f632b520>", "forward": "<function ActorCriticPolicy.forward at 0x7fa2f632b5b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa2f632b640>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa2f632b6d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa2f632b760>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa2f632b7f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa2f632b880>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa2f632b910>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fa2f6322ec0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1011200, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688433664068122457, "learning_rate": 0.0005, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAA2yDyu95G6XkfDu2TjprX4JCY7k0YSNQAAgD8AAIA/zeKxPcO5GLpuNQ28oa7ROAUVSjoK+gA6AACAPwAAgD/NLFo9w01puqpD6zp8YdI1SdX7ugYbCroAAIA/AACAP827TL3hFKO6yczHOzNi3zhs9EC6j1qluQAAgD8AAIA/CtF2vvCl+z7oZVM+HUehvvhqC73tUeE8AAAAAAAAAABm1sc8KeRruncLPDoTFCo2srAGuyDHXLkAAIA/AACAP2bHZr1IbYC6BgeRu2Xb4jgNEA67+m4VOgAAgD8AAIA/WmnevYzxBz/isEa9q8cav+u5Hbz4pbw7AAAAAAAAAADN/1i+XEY9OzYzzjkNVJO5hPfzvK+WuLgAAIA/AACAP7MZqD17IIC6ouWpOiv4q7b7ZiG7MtPBuQAAgD8AAAAArTcmvlIGljq0Caa7qZN+OLc/hbwaEcA6AACAPwAAgD/DNKI+h42CP/ojCj98TDG/B6l/PkfoHT4AAAAAAAAAABYAdb7Uklw+w7sZPmP9Ir7L+Hu8hldJPQAAAAAAAAAAGnUjvcPpJ7pqW9M7h5OCtZDgjjuAp3K0AACAPwAAgD8AWhE9e/qTutjxx7sqDqi2DnunOsu7FzYAAIA/AACAP82iI7xSON65HjMePMK7UDZhgtk7vjVLNQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.011200000000000099, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGNhPmozeoGMAWyUTegDjAF0lEdAsJv1Frl/6XV9lChoBkdAYp8uanaWX2gHTegDaAhHQLCco+KTB691fZQoaAZHv/ZwYtQKrrBoB0tmaAhHQLCdP/kvK2d1fZQoaAZHQGSPPDHfdh1oB03oA2gIR0CwnaAQcxTLdX2UKGgGR0BgrjLEDQqqaAdN6ANoCEdAsJ4JyS3b23V9lChoBkdASxQVoHs1K2gHS6ZoCEdAsJ693bEgn3V9lChoBkdAYo/Hf/FR52gHTegDaAhHQLCe6WJaaCt1fZQoaAZHQGOmkYwZflZoB03oA2gIR0Cwn1cvh60IdX2UKGgGR0BHYbEP1+RYaAdLYmgIR0CwoHjgQ6IWdX2UKGgGR0BkW+HFglWwaAdN6ANoCEdAsKDCBxxT9HV9lChoBkdAXn1Kf4AS4GgHTegDaAhHQLChTHsTnJV1fZQoaAZHQGNLnO0LMLZoB03oA2gIR0CwoW2v8qFzdX2UKGgGR0BmW5ikO7QLaAdN6ANoCEdAsKslvFWGRHV9lChoBkdAa0fenhsImmgHTXACaAhHQLCrNJiAlOZ1fZQoaAZHQBIqJuVHFxZoB0ueaAhHQLCryl6JIlN1fZQoaAZHQGVX7Jnxri5oB03oA2gIR0CwrCLzCk44dX2UKGgGR0BktEd92HLzaAdN6ANoCEdAsK1uCxu89XV9lChoBkdAQDaZH/cWTGgHS3poCEdAsK133yqdYnV9lChoBkdAZzEwblzU7WgHTegDaAhHQLCuTl5nlGR1fZQoaAZHv8g+0PYnOSpoB0tSaAhHQLCvST987ZF1fZQoaAZHQGNaES26TW5oB03oA2gIR0CwsAhg7YChdX2UKGgGR0BlkaNQ0oBraAdN6ANoCEdAsLC0gLZzxXV9lChoBkdASptyWAwwkGgHS2poCEdAsLFiSzPa+XV9lChoBkdAR1kK1G9YfWgHS1RoCEdAsLJ9ew9q13V9lChoBkdAYFyskpqh12gHTegDaAhHQLCyuechC+l1fZQoaAZHQD3efywwCbNoB0unaAhHQLCy4XXiBGx1fZQoaAZHQGF65TZQHiZoB03oA2gIR0CwsyS0jTrndX2UKGgGR0BlphkkKNQ1aAdN6ANoCEdAsLPCdSVGC3V9lChoBke/91U3n6l+E2gHS2VoCEdAsLRyf/WDpXV9lChoBkdAYG1BfrrxAmgHTegDaAhHQLC0wZa3Zwp1fZQoaAZHQGZhut4iX6ZoB03oA2gIR0CwtPxKHwgDdX2UKGgGR0Bnb7kIX0oSaAdN6ANoCEdAsMAF1jiGWXV9lChoBkdAYyzdld1Md2gHTegDaAhHQLDAiC6H0sh1fZQoaAZHQGC2KKxcE/1oB03oA2gIR0CwwKiKm8/VdX2UKGgGR0BialOM2m52aAdN6ANoCEdAsMDX3lCCz3V9lChoBkdAYSLjmSyMUGgHTegDaAhHQLDA6V9Wp611fZQoaAZHQGHzqp1ie/ZoB03oA2gIR0CwwYpw4sErdX2UKGgGR0BmfQ7q6e5GaAdN6ANoCEdAsMPiN1hb4nV9lChoBkdAZu49lmOENGgHTegDaAhHQLDD79i+cpd1fZQoaAZHQGFCkeyRjjJoB03oA2gIR0CwxrOmFajfdX2UKGgGR0Bmj2s7uDzzaAdN6ANoCEdAsNNZK7I1cnV9lChoBkdAaU1ROUMXrWgHTegDaAhHQLDT+7Pppvh1fZQoaAZHQGUXKJEYwZhoB03oA2gIR0Cw1FcZ5zHTdX2UKGgGR0BolqZlWfbsaAdN6ANoCEdAsNTuERJ2+3V9lChoBkdAZLd9VFQVK2gHTegDaAhHQLDVcqu8sc11fZQoaAZHQGSjDopx3mpoB03oA2gIR0Cw1aZCa7VbdX2UKGgGR0Bk0jobGWD6aAdN6ANoCEdAsNXNwGW2PXV9lChoBkdAReSkqMFUymgHS5poCEdAsNdpjFyaNXV9lChoBkdAY1RTtsvZiGgHTegDaAhHQLDXpVJtix51fZQoaAZHQGTUirtE5QxoB03oA2gIR0Cw2DWqtHQQdX2UKGgGR0BlrvUrkKeDaAdN6ANoCEdAsNhZJ17pmnV9lChoBkdAYhsgte2NN2gHTegDaAhHQLDYi0JF9a51fZQoaAZHQGNk6XKKYRdoB03oA2gIR0Cw2JvsAvL6dX2UKGgGR0BnEnPPcBU8aAdN6ANoCEdAsNk6v6j323V9lChoBkdAMxpa7mMfimgHS39oCEdAsNm+GrS3LHV9lChoBkdAT06T4cm0FGgHS5xoCEdAsNpQJD3M6nV9lChoBkdAY8D1r6+FlGgHTegDaAhHQLDa+8rqdH51fZQoaAZHQGex0yYXwb5oB03oA2gIR0Cw2wTzqbBodX2UKGgGR0BiQ3y/bj95aAdN6ANoCEdAsNzofSx7iXV9lChoBkdAZV+apgkTpWgHTegDaAhHQLDp+8xsVL11fZQoaAZHQGXUGSQo1DVoB03oA2gIR0Cw6mnXumaZdX2UKGgGR0BlDWBH09QoaAdN6ANoCEdAsOqpBa9sanV9lChoBkdAZJ9h/Aj6e2gHTegDaAhHQLDrHeuFHrh1fZQoaAZHQGVvXrMTviNoB03oA2gIR0Cw66DvJA+qdX2UKGgGR0BlGlA7gbZOaAdN6ANoCEdAsOwGLiuMdnV9lChoBkdAZRGuNgjQiWgHTegDaAhHQLDuKLwF1Sx1fZQoaAZHQGAQUUO/cnFoB03oA2gIR0Cw7oCqABkqdX2UKGgGR0BFgIXj2i+MaAdLpGgIR0Cw7pu4XoC/dX2UKGgGR0BkOePmxMWXaAdN6ANoCEdAsO9OhDgIhXV9lChoBkdAZBJ/HYHxBmgHTegDaAhHQLDvzMXrMTx1fZQoaAZHQGUbAzHjp9toB03oA2gIR0Cw8Pls54nndX2UKGgGR0Bk8w9X9zfaaAdN6ANoCEdAsPHC04R283V9lChoBkdAZJoXizcAR2gHTegDaAhHQLDyXLjPv8Z1fZQoaAZHQGF8kMb3oLZoB03oA2gIR0Cw+1l+3H7xdX2UKGgGR0BfgKZ2IO6NaAdN6ANoCEdAsPtiWa+ev3V9lChoBkdAM69ELH+6y2gHS4VoCEdAsP2IoDxLCnV9lChoBkdAYcSp0fYBeWgHTegDaAhHQLD968AaNuN1fZQoaAZHQGj2h6By0a9oB03zAWgIR0CxAExwZOzqdX2UKGgGR0BkQDU5MlC1aAdN6ANoCEdAsQH/74zrNXV9lChoBkdAY6J5eJHiFWgHTegDaAhHQLECbXlr/Kh1fZQoaAZHQGdZgFotcwBoB03oA2gIR0CxAqkupS75dX2UKGgGR0BfgNWp6yB1aAdN6ANoCEdAsQMTT6SDAnV9lChoBkdAYJ5yT6i0wGgHTegDaAhHQLEDjDtw71Z1fZQoaAZHQD6qbAk9lmRoB0vNaAhHQLEEoEbYK6Z1fZQoaAZHQGUanBtUGV1oB03oA2gIR0CxBb50wJw9dX2UKGgGR0Bj/2lQ/HHWaAdN6ANoCEdAsQX8Q8OkL3V9lChoBkdAXImfqX4TK2gHTegDaAhHQLEGDmqo60Z1fZQoaAZHQGd/tFjNILBoB03oA2gIR0CxBoJ7gKnfdX2UKGgGR0BmpaO1fE4vaAdN6ANoCEdAsRFAYxcmjXV9lChoBkdAY697/n4fwWgHTegDaAhHQLER3txdY4h1fZQoaAZHQGWrIqCpWFNoB03oA2gIR0CxEoQHVwxWdX2UKGgGR0BjRFaOgg5jaAdN6ANoCEdAsRM/vF3pwHV9lChoBkdAQTxPhybQTmgHS5NoCEdAsRPXOVxCIHV9lChoBkdAY9hS5RTCL2gHTegDaAhHQLEVOn1WbPR1fZQoaAZHQGRwoOH31z1oB03oA2gIR0CxFYiPQv6CdX2UKGgGR0BeELilzltCaAdN6ANoCEdAsRdbV2A5JnV9lChoBkdAYzlVjqfOEGgHTegDaAhHQLEaIEPDpC91fZQoaAZHQGVkq1PWQOpoB03oA2gIR0CxGnvfoA4odX2UKGgGR0BjLOaUiY9gaAdN6ANoCEdAsRsnxRVIZ3V9lChoBkdAXCfXiBGx2WgHTegDaAhHQLEb79Net0V1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 790, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 800, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.05, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9AYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |