ppo_lunar_lander-v2 / config.json
bobobert4's picture
More train steps
cb8e439
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c5cb629a320>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c5cb629a3b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c5cb629a440>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c5cb629a4d0>", "_build": "<function ActorCriticPolicy._build at 0x7c5cb629a560>", "forward": "<function ActorCriticPolicy.forward at 0x7c5cb629a5f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c5cb629a680>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c5cb629a710>", "_predict": "<function ActorCriticPolicy._predict at 0x7c5cb629a7a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c5cb629a830>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c5cb629a8c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c5cb629a950>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c5cb628fd40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690398554460776350, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAO1AED7UaoE+3pC7vj+L576OPRS9hiUwvgAAAAAAAAAAaNClvuTDBz965OU+6HoCv3R2r72w1os+AAAAAAAAAACaJro80kiiP6nZGD4MySC/sZkRPRGlvT0AAAAAAAAAAFpIqL3XUgQ8q9SWPs6DRr5Jb1c9NuKhvAAAAAAAAAAAgG0UvcMlGDkFoJU8grQpszIaybuaSG6zAACAPwAAgD9NjVm936GHPK6QJT6c0xK+vCMmPpcTi78AAAAAAACAPwCQqzo92nC5zRk6vL6lvbYdd2S7Es0uNgAAAAAAAAAAALWpPBb4qz8qVaM+FckQv2WpCDxqtgI+AAAAAAAAAADzwgE+HN65P3rRHD+zlBS+cNwMPiw6qj4AAAAAAAAAAFrVQb5o3JU+uiJsPj9c175d7ai8PNZEPQAAAAAAAAAAE3ksvnvqpj/F6Qi/fzAMvxPSG76QbUG+AAAAAAAAAAAmdZ+96IBtP8SDoL3yAzW/U6+QvVtIkL0AAAAAAAAAAAAyPz3jVwI9YiIrvkrHh7580IS93kFLPQAAAAAAAAAAZhBJvMmtFz9eEXW9nugXv3O2erx+0ca8AAAAAAAAAACNaAS+TvnEPipHvT23qfS+0f53vVAvhz0AAAAAAAAAADOTyr6dJ24/51SjvWqL/b7AG+m+7YJePgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIFlmvnr6eMAWyUS8mMAXSUR0ClxtPIfbKzdX2UKGgGR0BwLl/rjYI0aAdLz2gIR0ClxuSlenhsdX2UKGgGR0Bxth8zAN5MaAdL0WgIR0Clxvk3juKGdX2UKGgGR0BytjbO/tY0aAdLtGgIR0Clxwaa1Cw9dX2UKGgGR0BzHvcdo372aAdL5mgIR0ClxwxbSqlxdX2UKGgGR0Bwzus7uDzzaAdLsWgIR0Clxx7FCLMtdX2UKGgGR0Bwvpc8kleGaAdLzGgIR0ClxyviLl3hdX2UKGgGR0Bw3wIppeu3aAdL0WgIR0Clxz4rBj4IdX2UKGgGR0Bxtq/N7jT8aAdL9GgIR0Clx3TTOPeYdX2UKGgGR0BzBLyMDOkdaAdLz2gIR0Clx616u4gBdX2UKGgGR0BxiP0e2d/baAdLpWgIR0Clx9JyIYWMdX2UKGgGR0Bzp209hZyNaAdLt2gIR0ClyAywGGEgdX2UKGgGR0BuG+lqJuVHaAdLt2gIR0ClyCi8FpwkdX2UKGgGR0Bx2BJ7LMcIaAdL2WgIR0ClyC1l5GBndX2UKGgGR0BzVhnezlcRaAdLw2gIR0ClyH4vFm4BdX2UKGgGR0By7OL1mJ3xaAdLu2gIR0ClyMs+/xlQdX2UKGgGR0ByH4wDeTFEaAdLw2gIR0ClySqoAGSqdX2UKGgGR0ByMGWyC4BnaAdLwmgIR0ClyTat9x6wdX2UKGgGR0Bx+IB/7SApaAdLt2gIR0ClyUvMjeKsdX2UKGgGR0Bxp54zJp35aAdLvmgIR0ClyUpzLfUGdX2UKGgGR0By1J1aGHpKaAdLw2gIR0ClyU49gWrPdX2UKGgGR0BzStM495hSaAdLwGgIR0ClyVYkeIVNdX2UKGgGR0BvVtoN/e+FaAdLumgIR0ClyWGyX2M9dX2UKGgGR0BzLYXUH6dlaAdLumgIR0ClyXI7V8TjdX2UKGgGR0Bw+Rk+X7cgaAdLxmgIR0ClybvepGWldX2UKGgGR0BwNxGgBcRlaAdLuWgIR0ClycqaG5+ZdX2UKGgGR0BvUe5J9RaYaAdLqWgIR0ClyfmjTKDDdX2UKGgGR0BxEAeMhougaAdLp2gIR0Clyg4ZEUj+dX2UKGgGR0BxyIQtjCpFaAdL0WgIR0Clyi9I5HVgdX2UKGgGR0Bx0lfoicG1aAdLyWgIR0ClynATqSowdX2UKGgGR0Bxwi+j/MnraAdLpWgIR0ClyqaIeo1ldX2UKGgGR0BzzNBQemvXaAdLxmgIR0Clyro55qubdX2UKGgGR0BwJIU34sVdaAdLtWgIR0Clyy7FCLMtdX2UKGgGR0BxwCSZBsyjaAdLtmgIR0Cly0/k/8l5dX2UKGgGR0By3B7JGOMmaAdLxWgIR0Cly3v91loUdX2UKGgGR0BwMU/1QIldaAdLuWgIR0Cly4XfIjnndX2UKGgGR0Bx+hefI0ZWaAdLo2gIR0Cly5LGaQV9dX2UKGgGR0Bym3hXKbKBaAdL0mgIR0Cly5k9Mbm2dX2UKGgGR0BvrLlJYkmhaAdL1mgIR0Cly9P9DQZ5dX2UKGgGR0ByFHbBXS0CaAdL3mgIR0Cly99BjWkKdX2UKGgGR0ByVm4TbnHOaAdL6GgIR0Cly/YbS7XhdX2UKGgGR0BywqKfnOjZaAdL0WgIR0ClzDndweeWdX2UKGgGR0BzwRd2Pkq+aAdLsmgIR0ClzJab4Ju3dX2UKGgGR0BxwKZYxL00aAdL2WgIR0ClzKHwob4rdX2UKGgGR0By6FH8TBZZaAdL1WgIR0ClzLtjTa0ydX2UKGgGR0ByBIF6iTMaaAdLuWgIR0ClzOpI+W4WdX2UKGgGR0BxWO2NNrTIaAdLz2gIR0ClzUcKw6hhdX2UKGgGR0Bxf49FF2FGaAdLrWgIR0ClzVY9X9zfdX2UKGgGR0Bv6b39JjDsaAdLq2gIR0Clza2eg+QmdX2UKGgGR0ByADzErGzbaAdLqmgIR0ClzbiIk7fYdX2UKGgGR0ByxB3eN1hcaAdLvGgIR0ClzfCOvMbFdX2UKGgGR0BwSlwDNhVmaAdL1mgIR0ClzgSsjmjkdX2UKGgGR0BySbBHkLhKaAdLsWgIR0Clzhe7+T/ydX2UKGgGR0ByxNntfG+9aAdL+GgIR0ClzqJ6hQFcdX2UKGgGR0BykjPdEb5uaAdL42gIR0ClztX8n/kvdX2UKGgGR0BxsBxJd0JXaAdL0WgIR0ClzuQr1/UfdX2UKGgGR0Byu7MxGlQ/aAdLu2gIR0Clzv9G7SRbdX2UKGgGR0Bxi9ocrAgxaAdLzmgIR0Clz0uJk5IZdX2UKGgGR0ByY3zmOlwcaAdL4GgIR0Clz6WJJoTPdX2UKGgGR0BzmLpt78ekaAdLtWgIR0Clz70f5k9VdX2UKGgGR0BwOAMRYigTaAdLuGgIR0Clz7iMo+fRdX2UKGgGR0Bz2baews5GaAdL8WgIR0Cl0BcHWz4UdX2UKGgGR0ByG69Zid8RaAdLtWgIR0Cl0BeKbaysdX2UKGgGR0BwLPBLwnYyaAdLtmgIR0Cl0CU6gdwOdX2UKGgGR0BxrYogFHJ+aAdLzGgIR0Cl0J/kmx+sdX2UKGgGR0BzVScXm/34aAdLy2gIR0Cl0MQ1BMSLdX2UKGgGR0BwyO+0w8GLaAdL0GgIR0Cl0MLGaQV9dX2UKGgGR0Bw6nSsr/bTaAdLtmgIR0Cl0UG/nGKidX2UKGgGR0BxyQqmTC+DaAdLyWgIR0Cl0VEvsZ5zdX2UKGgGR0Bwgcr4FiazaAdLw2gIR0Cl0XqNIbwSdX2UKGgGR0Bws2LYPGyYaAdLwWgIR0Cl0ZLmZE2HdX2UKGgGR0BzfN/oaDPGaAdLvWgIR0Cl0j9Zq20BdX2UKGgGR0By4Uqy4Wk8aAdL5GgIR0Cl0l+KKpDNdX2UKGgGR0Bwp63RXwLFaAdLxmgIR0Cl0mUu14PgdX2UKGgGR0Bxeg2Hck+paAdL0WgIR0Cl0niMYMvzdX2UKGgGR0BzA45o4+8oaAdLyWgIR0Cl0siPIXCTdX2UKGgGR0ByqsRXfZVXaAdL32gIR0Cl0xdnK4hEdX2UKGgGR0Byc3LB9Cu2aAdL4GgIR0Cl0ynsLORldX2UKGgGR0BxOtXlr/KhaAdLuGgIR0Cl00i/wiJPdX2UKGgGR0Bx9vQ1JlJ6aAdLzGgIR0Cl02ml67d0dX2UKGgGR0Bw3UtNBWxRaAdLwmgIR0Cl02v5YYBOdX2UKGgGR0Bxc5B+nZTRaAdLqWgIR0Cl04+nQ6ZIdX2UKGgGR0BujyJMxoIwaAdLtGgIR0Cl08M7MgU2dX2UKGgGR0BxIKHRCx/vaAdLuWgIR0Cl1BWx6fJ4dX2UKGgGR0ByBj09QoCuaAdL0WgIR0Cl1FN6w+t9dX2UKGgGR0BxKq3MINVjaAdLtmgIR0Cl1N2LYPGydX2UKGgGR0Bz4bHxSYPYaAdLxWgIR0Cl1RIa99MLdX2UKGgGR0Bx5TOfNA1OaAdLzWgIR0Cl1Q/bKzRhdX2UKGgGR0BxRt1p0wJxaAdLzWgIR0Cl1UoL5RCQdX2UKGgGR0BwktIYm9g4aAdLxGgIR0Cl1YErwvxpdX2UKGgGR0Bvc8FEAo5QaAdLwGgIR0Cl1cUCJXQudX2UKGgGR0ByEqU4aP0aaAdLrmgIR0Cl1eDGT9sKdX2UKGgGR0BxS+3ocJdCaAdLymgIR0Cl1gQdsBQvdX2UKGgGR0BwQtpCa7VbaAdLwmgIR0Cl1ggQHzH0dX2UKGgGR0Bx7Kr/82rGaAdLq2gIR0Cl1jkoWpIddX2UKGgGR0BwCPrLQokSaAdLw2gIR0Cl1lehwl0HdX2UKGgGR0BzAjvG6wt8aAdL8GgIR0Cl1tBkI5YHdX2UKGgGR0BxvoCNjslcaAdLyWgIR0Cl1vq2SdOJdX2UKGgGR0BxUIrmQr+YaAdLvWgIR0Cl1xAtvn8sdX2UKGgGR0BlKi4lQdjoaAdN6ANoCEdApdcqU9pyqHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}