1M learn steps, learning_rate 5e-5, n_steps 800, ent_coef 5e-2
Browse files- README.md +1 -1
- config.json +1 -1
- lunar_landing_ppo_030723_02.zip +3 -0
- lunar_landing_ppo_030723_02/_stable_baselines3_version +1 -0
- lunar_landing_ppo_030723_02/data +99 -0
- lunar_landing_ppo_030723_02/policy.optimizer.pth +3 -0
- lunar_landing_ppo_030723_02/policy.pth +3 -0
- lunar_landing_ppo_030723_02/pytorch_variables.pth +3 -0
- lunar_landing_ppo_030723_02/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 201.54 +/- 84.43
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa2f632b2e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa2f632b370>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa2f632b400>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa2f632b490>", "_build": "<function ActorCriticPolicy._build at 0x7fa2f632b520>", "forward": "<function ActorCriticPolicy.forward at 0x7fa2f632b5b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa2f632b640>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa2f632b6d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa2f632b760>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa2f632b7f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa2f632b880>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa2f632b910>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fa2f6322ec0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688431577366869205, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADlqD0Kr48/O6GOPj/aCb/4zC8+qgu5PQAAAAAAAAAAjdRKvu4uorw4IBo7Ps1tOe8jDj7PUEW6AACAPwAAgD8zgv28vTSoP+Uw2b5LxzG//lKpOldYjb0AAAAAAAAAANrMwr1q0jE+k2MUPvspWL6H1Tk9B2uSPQAAAAAAAAAAGoz0vQoGFLs+Lh+9MEaQuAxkijzCUfg8AACAPwAAAABmFpC8j9IzOfqMPjxvo1i+38qvvMc7Q70AAAAAAAAAALqYdz6NMlU/xmXIPn1O574/qYg+uo/yPQAAAAAAAAAA3XpovunZBLzqRZy6q21RuEvjiz3LSr45AACAPwAAgD/g/BA+yB2EO5pYdL4y9Wy8Z80TPrr7IL4AAIA/AACAP6J0oL69Ehk/Msy6vdJw4r52bS2+CqyePQAAAAAAAAAA0y8wvshAkLzau5W5QtUduHoLCj5+tdU4AACAPwAAgD9NJTA9H1WfuYujczaL8Qgy35pqO/a+lbUAAIA/AACAP/ouIr722HK8PHQvO9TweTkeZN49pu1vugAAgD8AAIA/wGO4vm2c5T5Y+/g9IBHDvvuWG73k+Zk9AAAAAAAAAADzW2M+bO+oPLDfWb7upoK+b4wQvewXwToAAAAAAAAAAMZzQD4UhMK8+sSLutwPFTnnsC++IDzCOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV9wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCHyncclw+MAWyUS9qMAXSUR0CgPDDqGDcudX2UKGgGR0Bwek4cWCVbaAdL7mgIR0CgPEwSJ0nxdX2UKGgGR0Bwe+0F8ohIaAdL2GgIR0CgPIP3i704dX2UKGgGR0BwW6Haews5aAdL+GgIR0CgPN0jC53DdX2UKGgGR0BxkflRxcVyaAdNAAFoCEdAoD2GzKLbYnV9lChoBkdAcgohwVCXyGgHS9FoCEdAoD2MGcFyJnV9lChoBkdAbnhdxAB1cWgHS9doCEdAoD5urIYFaHV9lChoBkdAcD1D5j6N2mgHS+1oCEdAoD5/LRrrPnV9lChoBkdAccG1CPZIx2gHTVoBaAhHQKA+q04R28t1fZQoaAZHQHJau76Hj6xoB0vKaAhHQKBALYV6/qR1fZQoaAZHQHHPINRWLgpoB0vHaAhHQKBAa6PKdQR1fZQoaAZHQHC1hplBhQZoB0vBaAhHQKBAs4wyqMp1fZQoaAZHQHB7+CPIXCVoB01aAmgIR0CgQNUNz8xcdX2UKGgGR0ByC6KrJbMYaAdL22gIR0CgQTURnOB2dX2UKGgGR0BuLkEHMUypaAdL72gIR0CgQfStNi6QdX2UKGgGR0Bwtv2pQ1rJaAdL1mgIR0CgQf6yjYZmdX2UKGgGR0BxpK44Ia99aAdLzWgIR0CgQoV0knkUdX2UKGgGR0Bwnxm8M/hVaAdLy2gIR0CgQp62fChwdX2UKGgGR0BxzMRGtp22aAdL3GgIR0CgQr9u5z5odX2UKGgGR0BsM9nVXmvGaAdLzmgIR0CgRAaAvtdBdX2UKGgGR0Bxaru2JBPbaAdL3mgIR0CgRBearmyPdX2UKGgGR0Bw3l4Pf8/EaAdLxmgIR0CgRFHpjc2zdX2UKGgGR0BvUNvIfbKzaAdL4mgIR0CgRUwZflZHdX2UKGgGR0Bw0j889wFUaAdLyWgIR0CgRbCy6cy4dX2UKGgGR0Bv9mHP/rB1aAdNIAFoCEdAoEXszj3mFXV9lChoBkdAbgtjo6jnFGgHS9toCEdAoEYCi7Ciy3V9lChoBkdAccaGlQ/HHWgHS8xoCEdAoEZQuIyj6HV9lChoBkdAcgkmXgLqlmgHS8xoCEdAoEZrS/j81nV9lChoBkdAb51thNM4+GgHS9hoCEdAoEbF1fVqe3V9lChoBkdAYriBKcurZWgHTegDaAhHQKBG3bqyGBZ1fZQoaAZHQHMmxeC04R5oB0vdaAhHQKBIKd07r9l1fZQoaAZHQHKiqQq7ROVoB0vYaAhHQKBISS9ugpV1fZQoaAZHQHEhYd2gWadoB0vvaAhHQKBIcXkYGdJ1fZQoaAZHQG/GulfqoqFoB0vLaAhHQKBI8SgXdj51fZQoaAZHQG7Qn/LkjopoB0vSaAhHQKBJtUWEbo91fZQoaAZHQGRbklNUOutoB03oA2gIR0CgSbN8NQTFdX2UKGgGR0BxH+e7L+xXaAdLxWgIR0CgScOymhugdX2UKGgGR0Bw0lhx5s0paAdL72gIR0CgShs495hSdX2UKGgGR0BveD+vQnhLaAdLw2gIR0CgSjZeqrBCdX2UKGgGR0BwaRIatLcsaAdLzGgIR0CgSkYIjW07dX2UKGgGR0BxjOP+4smOaAdNBAFoCEdAoEpEELYwqXV9lChoBkdAb/bKA8Swn2gHS+hoCEdAoEppwfhddHV9lChoBkdAcUNcB2fTTmgHS8NoCEdAoEub6ab4J3V9lChoBkdAcOZ2fChvi2gHS9hoCEdAoEu2WD6Fd3V9lChoBkdAcTApQ1rIo2gHS8NoCEdAoEwcWl/H53V9lChoBkdAXSNB1LamGmgHTegDaAhHQKBMcCZnctZ1fZQoaAZHQHB1eMQ2/BZoB0vKaAhHQKBM64//vOR1fZQoaAZHQHEVlG9YfXBoB0u+aAhHQKBNQmQbMot1fZQoaAZHQG6mDCpFTehoB0u6aAhHQKBNWVBUrCp1fZQoaAZHQHHWua8YhuBoB0vMaAhHQKBNVS3LFGZ1fZQoaAZHQHHyPci4axZoB0vpaAhHQKBNcvA44qB1fZQoaAZHQHIAJK3/gixoB0vwaAhHQKBNfzshPj51fZQoaAZHQGQBa2nbZe1oB03oA2gIR0CgTbYB/7SBdX2UKGgGR0Bua74nF5v+aAdLwWgIR0CgTpHJ9y93dX2UKGgGR0BlNMfozN2UaAdN6ANoCEdAoE6bynUDuHV9lChoBkdAbz/M+u/1x2gHS8VoCEdAoE63cYZVGXV9lChoBkdAYj9GoaUA1mgHTegDaAhHQKBPL2Rq46R1fZQoaAZHQHDgVgQYk3VoB0vvaAhHQKBP5nZCfHx1fZQoaAZHQHBQfmHP/rBoB00FAWgIR0CgT/THS4OMdX2UKGgGR0BxTXZM+NcXaAdLvWgIR0CgUCIWP91mdX2UKGgGR0BydALJCBwuaAdL3GgIR0CgUKubRWtEdX2UKGgGR0ByLW1Bt1p1aAdL62gIR0CgUMH0se4kdX2UKGgGR0Bv0MdHUc4paAdL22gIR0CgUOcafjCIdX2UKGgGR0BxdM2qDK5kaAdNEgFoCEdAoFDvDWK/EnV9lChoBkdAcWiMwlByCGgHTUwBaAhHQKBSIa6STyJ1fZQoaAZHQHH0yde6ZploB0voaAhHQKBSJlbNbC91fZQoaAZHQHCasw1zhgpoB0vLaAhHQKBSOXF98Z11fZQoaAZHQHJ0cGorFwVoB008AmgIR0CgUvJjUd7wdX2UKGgGR0BwHJERaouPaAdL0GgIR0CgUxm51/2CdX2UKGgGR0BvtoMfA9FGaAdL12gIR0CgU3KX4TK1dX2UKGgGR0BvrnIGQjlgaAdL9GgIR0CgU7MeOn2qdX2UKGgGR0ByBKXSjQAuaAdNcQFoCEdAoFRFiz9jw3V9lChoBkdAchXc9W6shmgHS/FoCEdAoFSyxqwhXHV9lChoBkdAboXuEVWS2mgHS9doCEdAoFYyemNzbXV9lChoBkdAcRM5GSZBs2gHTToBaAhHQKBWRLsa86F1fZQoaAZHQHCuEPlMh5hoB0vYaAhHQKBWW8KXv6V1fZQoaAZHQG6bgNPP9k1oB0vIaAhHQKBXCm51/2F1fZQoaAZHQHKTQydnTRZoB0vSaAhHQKBYIAiml691fZQoaAZHQG1mv2PDHfdoB0u9aAhHQKBY1JdSl311fZQoaAZHQHKkktdzGPxoB0vkaAhHQKBZFMB6rvN1fZQoaAZHQGIZ9Y4hllNoB03oA2gIR0CgWgSNXHR1dX2UKGgGR0BwVGDtgKF7aAdL5GgIR0CgWmUCq6vrdX2UKGgGR0BwGyCnP3SKaAdLx2gIR0CgW1ZLh73PdX2UKGgGR0BxWl3HJcPfaAdL0GgIR0CgW6LtNSIhdX2UKGgGR0BxZyOBDohZaAdL0WgIR0CgW8AdOqNqdX2UKGgGR0BvEinvUjLTaAdLzWgIR0CgXGQR5C4SdX2UKGgGR0BeIXu/k/8maAdN6ANoCEdAoFzlsvZh8nV9lChoBkdAb0QTOgQHzGgHS9loCEdAoF2Hkkrwv3V9lChoBkdAbpnpX6qKg2gHS8RoCEdAoF6VAiV0LnV9lChoBkdAcFfXlbNbDGgHTUQCaAhHQKBet/echDB1fZQoaAZHQG8b4zi0fHRoB00DAWgIR0CgXteIMz/IdX2UKGgGR0BxHVxJd0JXaAdL7mgIR0CgXxDUmUnpdX2UKGgGR0Bx+EOH31zyaAdL0mgIR0CgX3HfMwDedX2UKGgGR0Bu4V8XvYvnaAdL1mgIR0CgX7K/ub7TdX2UKGgGR0Bx1SjpLVWkaAdL72gIR0CgYDaVdHDrdX2UKGgGR0Bk6+VmjCYUaAdN6ANoCEdAoGBDNB4UvnV9lChoBkdAbjwZ9d/rjmgHS+JoCEdAoGDB0wJw9HV9lChoBkdAb+JOWSlnAmgHS+loCEdAoGGCVObiInV9lChoBkdAYxmPI4lyBGgHTegDaAhHQKBhxUzbeuV1fZQoaAZHQHErH5eqrBFoB0vMaAhHQKBiE/fO2Rd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 320, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa2f632b2e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa2f632b370>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa2f632b400>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa2f632b490>", "_build": "<function ActorCriticPolicy._build at 0x7fa2f632b520>", "forward": "<function ActorCriticPolicy.forward at 0x7fa2f632b5b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa2f632b640>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa2f632b6d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa2f632b760>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa2f632b7f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa2f632b880>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa2f632b910>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fa2f6322ec0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1011200, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688433664068122457, "learning_rate": 0.0005, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAA2yDyu95G6XkfDu2TjprX4JCY7k0YSNQAAgD8AAIA/zeKxPcO5GLpuNQ28oa7ROAUVSjoK+gA6AACAPwAAgD/NLFo9w01puqpD6zp8YdI1SdX7ugYbCroAAIA/AACAP827TL3hFKO6yczHOzNi3zhs9EC6j1qluQAAgD8AAIA/CtF2vvCl+z7oZVM+HUehvvhqC73tUeE8AAAAAAAAAABm1sc8KeRruncLPDoTFCo2srAGuyDHXLkAAIA/AACAP2bHZr1IbYC6BgeRu2Xb4jgNEA67+m4VOgAAgD8AAIA/WmnevYzxBz/isEa9q8cav+u5Hbz4pbw7AAAAAAAAAADN/1i+XEY9OzYzzjkNVJO5hPfzvK+WuLgAAIA/AACAP7MZqD17IIC6ouWpOiv4q7b7ZiG7MtPBuQAAgD8AAAAArTcmvlIGljq0Caa7qZN+OLc/hbwaEcA6AACAPwAAgD/DNKI+h42CP/ojCj98TDG/B6l/PkfoHT4AAAAAAAAAABYAdb7Uklw+w7sZPmP9Ir7L+Hu8hldJPQAAAAAAAAAAGnUjvcPpJ7pqW9M7h5OCtZDgjjuAp3K0AACAPwAAgD8AWhE9e/qTutjxx7sqDqi2DnunOsu7FzYAAIA/AACAP82iI7xSON65HjMePMK7UDZhgtk7vjVLNQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.011200000000000099, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGNhPmozeoGMAWyUTegDjAF0lEdAsJv1Frl/6XV9lChoBkdAYp8uanaWX2gHTegDaAhHQLCco+KTB691fZQoaAZHv/ZwYtQKrrBoB0tmaAhHQLCdP/kvK2d1fZQoaAZHQGSPPDHfdh1oB03oA2gIR0CwnaAQcxTLdX2UKGgGR0BgrjLEDQqqaAdN6ANoCEdAsJ4JyS3b23V9lChoBkdASxQVoHs1K2gHS6ZoCEdAsJ693bEgn3V9lChoBkdAYo/Hf/FR52gHTegDaAhHQLCe6WJaaCt1fZQoaAZHQGOmkYwZflZoB03oA2gIR0Cwn1cvh60IdX2UKGgGR0BHYbEP1+RYaAdLYmgIR0CwoHjgQ6IWdX2UKGgGR0BkW+HFglWwaAdN6ANoCEdAsKDCBxxT9HV9lChoBkdAXn1Kf4AS4GgHTegDaAhHQLChTHsTnJV1fZQoaAZHQGNLnO0LMLZoB03oA2gIR0CwoW2v8qFzdX2UKGgGR0BmW5ikO7QLaAdN6ANoCEdAsKslvFWGRHV9lChoBkdAa0fenhsImmgHTXACaAhHQLCrNJiAlOZ1fZQoaAZHQBIqJuVHFxZoB0ueaAhHQLCryl6JIlN1fZQoaAZHQGVX7Jnxri5oB03oA2gIR0CwrCLzCk44dX2UKGgGR0BktEd92HLzaAdN6ANoCEdAsK1uCxu89XV9lChoBkdAQDaZH/cWTGgHS3poCEdAsK133yqdYnV9lChoBkdAZzEwblzU7WgHTegDaAhHQLCuTl5nlGR1fZQoaAZHv8g+0PYnOSpoB0tSaAhHQLCvST987ZF1fZQoaAZHQGNaES26TW5oB03oA2gIR0CwsAhg7YChdX2UKGgGR0BlkaNQ0oBraAdN6ANoCEdAsLC0gLZzxXV9lChoBkdASptyWAwwkGgHS2poCEdAsLFiSzPa+XV9lChoBkdAR1kK1G9YfWgHS1RoCEdAsLJ9ew9q13V9lChoBkdAYFyskpqh12gHTegDaAhHQLCyuechC+l1fZQoaAZHQD3efywwCbNoB0unaAhHQLCy4XXiBGx1fZQoaAZHQGF65TZQHiZoB03oA2gIR0CwsyS0jTrndX2UKGgGR0BlphkkKNQ1aAdN6ANoCEdAsLPCdSVGC3V9lChoBke/91U3n6l+E2gHS2VoCEdAsLRyf/WDpXV9lChoBkdAYG1BfrrxAmgHTegDaAhHQLC0wZa3Zwp1fZQoaAZHQGZhut4iX6ZoB03oA2gIR0CwtPxKHwgDdX2UKGgGR0Bnb7kIX0oSaAdN6ANoCEdAsMAF1jiGWXV9lChoBkdAYyzdld1Md2gHTegDaAhHQLDAiC6H0sh1fZQoaAZHQGC2KKxcE/1oB03oA2gIR0CwwKiKm8/VdX2UKGgGR0BialOM2m52aAdN6ANoCEdAsMDX3lCCz3V9lChoBkdAYSLjmSyMUGgHTegDaAhHQLDA6V9Wp611fZQoaAZHQGHzqp1ie/ZoB03oA2gIR0CwwYpw4sErdX2UKGgGR0BmfQ7q6e5GaAdN6ANoCEdAsMPiN1hb4nV9lChoBkdAZu49lmOENGgHTegDaAhHQLDD79i+cpd1fZQoaAZHQGFCkeyRjjJoB03oA2gIR0CwxrOmFajfdX2UKGgGR0Bmj2s7uDzzaAdN6ANoCEdAsNNZK7I1cnV9lChoBkdAaU1ROUMXrWgHTegDaAhHQLDT+7Pppvh1fZQoaAZHQGUXKJEYwZhoB03oA2gIR0Cw1FcZ5zHTdX2UKGgGR0BolqZlWfbsaAdN6ANoCEdAsNTuERJ2+3V9lChoBkdAZLd9VFQVK2gHTegDaAhHQLDVcqu8sc11fZQoaAZHQGSjDopx3mpoB03oA2gIR0Cw1aZCa7VbdX2UKGgGR0Bk0jobGWD6aAdN6ANoCEdAsNXNwGW2PXV9lChoBkdAReSkqMFUymgHS5poCEdAsNdpjFyaNXV9lChoBkdAY1RTtsvZiGgHTegDaAhHQLDXpVJtix51fZQoaAZHQGTUirtE5QxoB03oA2gIR0Cw2DWqtHQQdX2UKGgGR0BlrvUrkKeDaAdN6ANoCEdAsNhZJ17pmnV9lChoBkdAYhsgte2NN2gHTegDaAhHQLDYi0JF9a51fZQoaAZHQGNk6XKKYRdoB03oA2gIR0Cw2JvsAvL6dX2UKGgGR0BnEnPPcBU8aAdN6ANoCEdAsNk6v6j323V9lChoBkdAMxpa7mMfimgHS39oCEdAsNm+GrS3LHV9lChoBkdAT06T4cm0FGgHS5xoCEdAsNpQJD3M6nV9lChoBkdAY8D1r6+FlGgHTegDaAhHQLDa+8rqdH51fZQoaAZHQGex0yYXwb5oB03oA2gIR0Cw2wTzqbBodX2UKGgGR0BiQ3y/bj95aAdN6ANoCEdAsNzofSx7iXV9lChoBkdAZV+apgkTpWgHTegDaAhHQLDp+8xsVL11fZQoaAZHQGXUGSQo1DVoB03oA2gIR0Cw6mnXumaZdX2UKGgGR0BlDWBH09QoaAdN6ANoCEdAsOqpBa9sanV9lChoBkdAZJ9h/Aj6e2gHTegDaAhHQLDrHeuFHrh1fZQoaAZHQGVvXrMTviNoB03oA2gIR0Cw66DvJA+qdX2UKGgGR0BlGlA7gbZOaAdN6ANoCEdAsOwGLiuMdnV9lChoBkdAZRGuNgjQiWgHTegDaAhHQLDuKLwF1Sx1fZQoaAZHQGAQUUO/cnFoB03oA2gIR0Cw7oCqABkqdX2UKGgGR0BFgIXj2i+MaAdLpGgIR0Cw7pu4XoC/dX2UKGgGR0BkOePmxMWXaAdN6ANoCEdAsO9OhDgIhXV9lChoBkdAZBJ/HYHxBmgHTegDaAhHQLDvzMXrMTx1fZQoaAZHQGUbAzHjp9toB03oA2gIR0Cw8Pls54nndX2UKGgGR0Bk8w9X9zfaaAdN6ANoCEdAsPHC04R283V9lChoBkdAZJoXizcAR2gHTegDaAhHQLDyXLjPv8Z1fZQoaAZHQGF8kMb3oLZoB03oA2gIR0Cw+1l+3H7xdX2UKGgGR0BfgKZ2IO6NaAdN6ANoCEdAsPtiWa+ev3V9lChoBkdAM69ELH+6y2gHS4VoCEdAsP2IoDxLCnV9lChoBkdAYcSp0fYBeWgHTegDaAhHQLD968AaNuN1fZQoaAZHQGj2h6By0a9oB03zAWgIR0CxAExwZOzqdX2UKGgGR0BkQDU5MlC1aAdN6ANoCEdAsQH/74zrNXV9lChoBkdAY6J5eJHiFWgHTegDaAhHQLECbXlr/Kh1fZQoaAZHQGdZgFotcwBoB03oA2gIR0CxAqkupS75dX2UKGgGR0BfgNWp6yB1aAdN6ANoCEdAsQMTT6SDAnV9lChoBkdAYJ5yT6i0wGgHTegDaAhHQLEDjDtw71Z1fZQoaAZHQD6qbAk9lmRoB0vNaAhHQLEEoEbYK6Z1fZQoaAZHQGUanBtUGV1oB03oA2gIR0CxBb50wJw9dX2UKGgGR0Bj/2lQ/HHWaAdN6ANoCEdAsQX8Q8OkL3V9lChoBkdAXImfqX4TK2gHTegDaAhHQLEGDmqo60Z1fZQoaAZHQGd/tFjNILBoB03oA2gIR0CxBoJ7gKnfdX2UKGgGR0BmpaO1fE4vaAdN6ANoCEdAsRFAYxcmjXV9lChoBkdAY697/n4fwWgHTegDaAhHQLER3txdY4h1fZQoaAZHQGWrIqCpWFNoB03oA2gIR0CxEoQHVwxWdX2UKGgGR0BjRFaOgg5jaAdN6ANoCEdAsRM/vF3pwHV9lChoBkdAQTxPhybQTmgHS5NoCEdAsRPXOVxCIHV9lChoBkdAY9hS5RTCL2gHTegDaAhHQLEVOn1WbPR1fZQoaAZHQGRwoOH31z1oB03oA2gIR0CxFYiPQv6CdX2UKGgGR0BeELilzltCaAdN6ANoCEdAsRdbV2A5JnV9lChoBkdAYzlVjqfOEGgHTegDaAhHQLEaIEPDpC91fZQoaAZHQGVkq1PWQOpoB03oA2gIR0CxGnvfoA4odX2UKGgGR0BjLOaUiY9gaAdN6ANoCEdAsRsnxRVIZ3V9lChoBkdAXCfXiBGx2WgHTegDaAhHQLEb79Net0V1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 790, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 800, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.05, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9AYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
lunar_landing_ppo_030723_02.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd4a804e0448b5c761b31fb98db0c1df4fae7eca550c1ec0e4551bbcf2243d20
|
3 |
+
size 146734
|
lunar_landing_ppo_030723_02/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
lunar_landing_ppo_030723_02/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fa2f632b2e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa2f632b370>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa2f632b400>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa2f632b490>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fa2f632b520>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fa2f632b5b0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa2f632b640>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa2f632b6d0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fa2f632b760>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa2f632b7f0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa2f632b880>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa2f632b910>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fa2f6322ec0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1011200,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1688433664068122457,
|
30 |
+
"learning_rate": 0.0005,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAA2yDyu95G6XkfDu2TjprX4JCY7k0YSNQAAgD8AAIA/zeKxPcO5GLpuNQ28oa7ROAUVSjoK+gA6AACAPwAAgD/NLFo9w01puqpD6zp8YdI1SdX7ugYbCroAAIA/AACAP827TL3hFKO6yczHOzNi3zhs9EC6j1qluQAAgD8AAIA/CtF2vvCl+z7oZVM+HUehvvhqC73tUeE8AAAAAAAAAABm1sc8KeRruncLPDoTFCo2srAGuyDHXLkAAIA/AACAP2bHZr1IbYC6BgeRu2Xb4jgNEA67+m4VOgAAgD8AAIA/WmnevYzxBz/isEa9q8cav+u5Hbz4pbw7AAAAAAAAAADN/1i+XEY9OzYzzjkNVJO5hPfzvK+WuLgAAIA/AACAP7MZqD17IIC6ouWpOiv4q7b7ZiG7MtPBuQAAgD8AAAAArTcmvlIGljq0Caa7qZN+OLc/hbwaEcA6AACAPwAAgD/DNKI+h42CP/ojCj98TDG/B6l/PkfoHT4AAAAAAAAAABYAdb7Uklw+w7sZPmP9Ir7L+Hu8hldJPQAAAAAAAAAAGnUjvcPpJ7pqW9M7h5OCtZDgjjuAp3K0AACAPwAAgD8AWhE9e/qTutjxx7sqDqi2DnunOsu7FzYAAIA/AACAP82iI7xSON65HjMePMK7UDZhgtk7vjVLNQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.011200000000000099,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVMwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGNhPmozeoGMAWyUTegDjAF0lEdAsJv1Frl/6XV9lChoBkdAYp8uanaWX2gHTegDaAhHQLCco+KTB691fZQoaAZHv/ZwYtQKrrBoB0tmaAhHQLCdP/kvK2d1fZQoaAZHQGSPPDHfdh1oB03oA2gIR0CwnaAQcxTLdX2UKGgGR0BgrjLEDQqqaAdN6ANoCEdAsJ4JyS3b23V9lChoBkdASxQVoHs1K2gHS6ZoCEdAsJ693bEgn3V9lChoBkdAYo/Hf/FR52gHTegDaAhHQLCe6WJaaCt1fZQoaAZHQGOmkYwZflZoB03oA2gIR0Cwn1cvh60IdX2UKGgGR0BHYbEP1+RYaAdLYmgIR0CwoHjgQ6IWdX2UKGgGR0BkW+HFglWwaAdN6ANoCEdAsKDCBxxT9HV9lChoBkdAXn1Kf4AS4GgHTegDaAhHQLChTHsTnJV1fZQoaAZHQGNLnO0LMLZoB03oA2gIR0CwoW2v8qFzdX2UKGgGR0BmW5ikO7QLaAdN6ANoCEdAsKslvFWGRHV9lChoBkdAa0fenhsImmgHTXACaAhHQLCrNJiAlOZ1fZQoaAZHQBIqJuVHFxZoB0ueaAhHQLCryl6JIlN1fZQoaAZHQGVX7Jnxri5oB03oA2gIR0CwrCLzCk44dX2UKGgGR0BktEd92HLzaAdN6ANoCEdAsK1uCxu89XV9lChoBkdAQDaZH/cWTGgHS3poCEdAsK133yqdYnV9lChoBkdAZzEwblzU7WgHTegDaAhHQLCuTl5nlGR1fZQoaAZHv8g+0PYnOSpoB0tSaAhHQLCvST987ZF1fZQoaAZHQGNaES26TW5oB03oA2gIR0CwsAhg7YChdX2UKGgGR0BlkaNQ0oBraAdN6ANoCEdAsLC0gLZzxXV9lChoBkdASptyWAwwkGgHS2poCEdAsLFiSzPa+XV9lChoBkdAR1kK1G9YfWgHS1RoCEdAsLJ9ew9q13V9lChoBkdAYFyskpqh12gHTegDaAhHQLCyuechC+l1fZQoaAZHQD3efywwCbNoB0unaAhHQLCy4XXiBGx1fZQoaAZHQGF65TZQHiZoB03oA2gIR0CwsyS0jTrndX2UKGgGR0BlphkkKNQ1aAdN6ANoCEdAsLPCdSVGC3V9lChoBke/91U3n6l+E2gHS2VoCEdAsLRyf/WDpXV9lChoBkdAYG1BfrrxAmgHTegDaAhHQLC0wZa3Zwp1fZQoaAZHQGZhut4iX6ZoB03oA2gIR0CwtPxKHwgDdX2UKGgGR0Bnb7kIX0oSaAdN6ANoCEdAsMAF1jiGWXV9lChoBkdAYyzdld1Md2gHTegDaAhHQLDAiC6H0sh1fZQoaAZHQGC2KKxcE/1oB03oA2gIR0CwwKiKm8/VdX2UKGgGR0BialOM2m52aAdN6ANoCEdAsMDX3lCCz3V9lChoBkdAYSLjmSyMUGgHTegDaAhHQLDA6V9Wp611fZQoaAZHQGHzqp1ie/ZoB03oA2gIR0CwwYpw4sErdX2UKGgGR0BmfQ7q6e5GaAdN6ANoCEdAsMPiN1hb4nV9lChoBkdAZu49lmOENGgHTegDaAhHQLDD79i+cpd1fZQoaAZHQGFCkeyRjjJoB03oA2gIR0CwxrOmFajfdX2UKGgGR0Bmj2s7uDzzaAdN6ANoCEdAsNNZK7I1cnV9lChoBkdAaU1ROUMXrWgHTegDaAhHQLDT+7Pppvh1fZQoaAZHQGUXKJEYwZhoB03oA2gIR0Cw1FcZ5zHTdX2UKGgGR0BolqZlWfbsaAdN6ANoCEdAsNTuERJ2+3V9lChoBkdAZLd9VFQVK2gHTegDaAhHQLDVcqu8sc11fZQoaAZHQGSjDopx3mpoB03oA2gIR0Cw1aZCa7VbdX2UKGgGR0Bk0jobGWD6aAdN6ANoCEdAsNXNwGW2PXV9lChoBkdAReSkqMFUymgHS5poCEdAsNdpjFyaNXV9lChoBkdAY1RTtsvZiGgHTegDaAhHQLDXpVJtix51fZQoaAZHQGTUirtE5QxoB03oA2gIR0Cw2DWqtHQQdX2UKGgGR0BlrvUrkKeDaAdN6ANoCEdAsNhZJ17pmnV9lChoBkdAYhsgte2NN2gHTegDaAhHQLDYi0JF9a51fZQoaAZHQGNk6XKKYRdoB03oA2gIR0Cw2JvsAvL6dX2UKGgGR0BnEnPPcBU8aAdN6ANoCEdAsNk6v6j323V9lChoBkdAMxpa7mMfimgHS39oCEdAsNm+GrS3LHV9lChoBkdAT06T4cm0FGgHS5xoCEdAsNpQJD3M6nV9lChoBkdAY8D1r6+FlGgHTegDaAhHQLDa+8rqdH51fZQoaAZHQGex0yYXwb5oB03oA2gIR0Cw2wTzqbBodX2UKGgGR0BiQ3y/bj95aAdN6ANoCEdAsNzofSx7iXV9lChoBkdAZV+apgkTpWgHTegDaAhHQLDp+8xsVL11fZQoaAZHQGXUGSQo1DVoB03oA2gIR0Cw6mnXumaZdX2UKGgGR0BlDWBH09QoaAdN6ANoCEdAsOqpBa9sanV9lChoBkdAZJ9h/Aj6e2gHTegDaAhHQLDrHeuFHrh1fZQoaAZHQGVvXrMTviNoB03oA2gIR0Cw66DvJA+qdX2UKGgGR0BlGlA7gbZOaAdN6ANoCEdAsOwGLiuMdnV9lChoBkdAZRGuNgjQiWgHTegDaAhHQLDuKLwF1Sx1fZQoaAZHQGAQUUO/cnFoB03oA2gIR0Cw7oCqABkqdX2UKGgGR0BFgIXj2i+MaAdLpGgIR0Cw7pu4XoC/dX2UKGgGR0BkOePmxMWXaAdN6ANoCEdAsO9OhDgIhXV9lChoBkdAZBJ/HYHxBmgHTegDaAhHQLDvzMXrMTx1fZQoaAZHQGUbAzHjp9toB03oA2gIR0Cw8Pls54nndX2UKGgGR0Bk8w9X9zfaaAdN6ANoCEdAsPHC04R283V9lChoBkdAZJoXizcAR2gHTegDaAhHQLDyXLjPv8Z1fZQoaAZHQGF8kMb3oLZoB03oA2gIR0Cw+1l+3H7xdX2UKGgGR0BfgKZ2IO6NaAdN6ANoCEdAsPtiWa+ev3V9lChoBkdAM69ELH+6y2gHS4VoCEdAsP2IoDxLCnV9lChoBkdAYcSp0fYBeWgHTegDaAhHQLD968AaNuN1fZQoaAZHQGj2h6By0a9oB03zAWgIR0CxAExwZOzqdX2UKGgGR0BkQDU5MlC1aAdN6ANoCEdAsQH/74zrNXV9lChoBkdAY6J5eJHiFWgHTegDaAhHQLECbXlr/Kh1fZQoaAZHQGdZgFotcwBoB03oA2gIR0CxAqkupS75dX2UKGgGR0BfgNWp6yB1aAdN6ANoCEdAsQMTT6SDAnV9lChoBkdAYJ5yT6i0wGgHTegDaAhHQLEDjDtw71Z1fZQoaAZHQD6qbAk9lmRoB0vNaAhHQLEEoEbYK6Z1fZQoaAZHQGUanBtUGV1oB03oA2gIR0CxBb50wJw9dX2UKGgGR0Bj/2lQ/HHWaAdN6ANoCEdAsQX8Q8OkL3V9lChoBkdAXImfqX4TK2gHTegDaAhHQLEGDmqo60Z1fZQoaAZHQGd/tFjNILBoB03oA2gIR0CxBoJ7gKnfdX2UKGgGR0BmpaO1fE4vaAdN6ANoCEdAsRFAYxcmjXV9lChoBkdAY697/n4fwWgHTegDaAhHQLER3txdY4h1fZQoaAZHQGWrIqCpWFNoB03oA2gIR0CxEoQHVwxWdX2UKGgGR0BjRFaOgg5jaAdN6ANoCEdAsRM/vF3pwHV9lChoBkdAQTxPhybQTmgHS5NoCEdAsRPXOVxCIHV9lChoBkdAY9hS5RTCL2gHTegDaAhHQLEVOn1WbPR1fZQoaAZHQGRwoOH31z1oB03oA2gIR0CxFYiPQv6CdX2UKGgGR0BeELilzltCaAdN6ANoCEdAsRdbV2A5JnV9lChoBkdAYzlVjqfOEGgHTegDaAhHQLEaIEPDpC91fZQoaAZHQGVkq1PWQOpoB03oA2gIR0CxGnvfoA4odX2UKGgGR0BjLOaUiY9gaAdN6ANoCEdAsRsnxRVIZ3V9lChoBkdAXCfXiBGx2WgHTegDaAhHQLEb79Net0V1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 790,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 800,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.05,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9AYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
lunar_landing_ppo_030723_02/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3af4ac89d86ff85579cbe524c66d08e31d55545c26f46d26360c835292bdc7d9
|
3 |
+
size 87929
|
lunar_landing_ppo_030723_02/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dae5e5735699c518a79d0fe50fbe621b84987a54396b6a3726b9c71c3ddbc586
|
3 |
+
size 43329
|
lunar_landing_ppo_030723_02/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
lunar_landing_ppo_030723_02/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 201.53706459999998, "std_reward": 84.42538189280488, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-04T01:56:14.054035"}
|