File size: 2,290 Bytes
a8d721b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0538f3
a8d721b
 
b0538f3
a8d721b
b0538f3
a8d721b
 
 
 
 
 
 
 
 
 
 
 
 
b0538f3
 
 
12db0f0
a8d721b
b0538f3
a8d721b
b0538f3
a8d721b
 
b0538f3
a8d721b
 
 
 
b0538f3
a8d721b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
---
license: bigscience-bloom-rail-1.0
language:
- fr
pipeline_tag: text-generation
library_name: transformers
tags:
- alpaca
- bloom
- LLM
datasets:
- tatsu-lab/alpaca
inference: false
---

<p align="center" width="100%">
<img src="https://huggingface.co/bofenghuang/vigogne-instruct-bloom-7b1/resolve/main/vigogne_logo.png" alt="Vigogne" style="width: 40%; min-width: 300px; display: block; margin: auto;">
</p>

# Vigogne-instruct-bloom-7b1: A French Instruction-following BLOOM Model

Vigogne-instruct-bloom-7b1 is a [bigscience/bloom-7b1](https://huggingface.co/bigscience/bloom-7b1) model fine-tuned to follow the 🇫🇷 French instructions.

For more information, please visit the Github repo: https://github.com/bofenghuang/vigogne

**Usage and License Notices**: Same as [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca), Vigogne is intended and licensed for research use only. The dataset is CC BY NC 4.0 (allowing only non-commercial use) and models trained using the dataset should not be used outside of research purposes.

## Usage

This repo only contains the low-rank adapter. In order to access the complete model, you also need to load the base LLM model and tokenizer.

```python
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer

base_model_name_or_path = "bigscience/bloom-7b1"
lora_model_name_or_path = "bofenghuang/vigogne-instruct-bloom-7b1"

tokenizer = AutoTokenizer.from_pretrained(base_model_name_or_path, padding_side="right", use_fast=False)
model = AutoModelForCausalLM.from_pretrained(
    base_model_name_or_path,
    load_in_8bit=True,
    torch_dtype=torch.float16,
    device_map="auto",
)
model = PeftModel.from_pretrained(model, lora_model_name_or_path)
```

You can infer this model by using the following Google Colab Notebook.

<a href="https://colab.research.google.com/github/bofenghuang/vigogne/blob/main/notebooks/infer_chat.ipynb" target="_blank"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>

## Limitations

Vigogne is still under development, and there are many limitations that have to be addressed. Please note that it is possible that the model generates harmful or biased content, incorrect information or generally unhelpful answers.