File size: 21,633 Bytes
95a05a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
import sys
import warnings
from dataclasses import dataclass, field, asdict
from typing import Optional, List
import datasets
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from datasets import DatasetDict, load_dataset
import transformers
from transformers import (
AutoConfig,
AutoFeatureExtractor,
AutoModelForAudioClassification,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import send_example_telemetry
from transformers.utils.versions import require_version
from sklearn.metrics import (
accuracy_score,
average_precision_score,
f1_score,
roc_auc_score,
)
logger = logging.getLogger(__name__)
require_version(
"datasets>=1.14.0",
"To fix: pip install -r examples/pytorch/audio-classification/requirements.txt",
)
def list_field(default=None, metadata=None):
return field(default_factory=lambda: default, metadata=metadata)
@dataclass
class DistillationTrainingArguments:
"""
Arguments pertaining to distillation settings.
"""
alpha: float = field(
default=0.5,
metadata={
"help": "Hyperparameter to control the relative strength of each loss."
},
)
temperature: float = field(
default=2.0,
metadata={"help": "Scale factor of logits to soften the probabilities."},
)
layer_prefix: str = field(
default=None,
metadata={
"help": "Layer name prefix to copy from teacher model. E.g. `wav2vec2.encoder.layers`."
},
)
delimiter: str = field(
default=".", metadata={"help": "Layer name components delimiter."}
)
teacher_blocks: List[str] = list_field(
default=None,
metadata={
"help": "A list of teacher block indices to copy from. E.g. `'0 2 4 6 8 10'`"
},
)
class MultiLabelDistillationTrainer(Trainer):
def __init__(self, *args, teacher_model=None, **kwargs):
super().__init__(*args, **kwargs)
self.teacher_model = teacher_model
def compute_loss(self, model, inputs, return_outputs=False):
labels = inputs.pop("labels")
outputs_stu = model(**inputs)
logits_stu = outputs_stu.logits
bce_loss_fct = torch.nn.BCEWithLogitsLoss()
loss_bce = bce_loss_fct(
logits_stu.view(-1, self.model.config.num_labels),
labels.float().view(-1, self.model.config.num_labels),
)
with torch.no_grad():
outputs_tea = self.teacher_model(**inputs)
logits_tea = outputs_tea.logits
kd_loss_fct = nn.KLDivLoss(reduction="batchmean")
loss_kd = self.args.temperature**2 * kd_loss_fct(
F.log_softmax(logits_stu / self.args.temperature, dim=-1),
F.softmax(logits_tea / self.args.temperature, dim=-1),
)
loss = self.args.alpha * loss_bce + (1.0 - self.args.alpha) * loss_kd
return (loss, outputs_stu) if return_outputs else loss
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
Using `HfArgumentParser` we can turn this class
into argparse arguments to be able to specify them on
the command line.
"""
dataset_name: Optional[str] = field(
default=None, metadata={"help": "Name of a dataset from the datasets package"}
)
dataset_config_name: Optional[str] = field(
default=None,
metadata={
"help": "The configuration name of the dataset to use (via the datasets library)."
},
)
train_file: Optional[str] = field(
default=None,
metadata={"help": "A file containing the training audio paths and labels."},
)
eval_file: Optional[str] = field(
default=None,
metadata={"help": "A file containing the validation audio paths and labels."},
)
train_split_name: str = field(
default="train",
metadata={
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
},
)
eval_split_name: str = field(
default="validation",
metadata={
"help": (
"The name of the training data set split to use (via the datasets library). Defaults to 'validation'"
)
},
)
audio_column_name: str = field(
default="audio",
metadata={
"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"
},
)
label_column_name: Optional[str] = field(
default="label",
metadata={
"help": "The name of the dataset column containing the labels. Defaults to 'label'"
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
max_length_seconds: float = field(
default=20,
metadata={
"help": "Audio clips will be randomly cut to this length during training if the value is set."
},
)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
default="facebook/wav2vec2-base",
metadata={
"help": "Path to pretrained model or model identifier from huggingface.co/models"
},
)
config_name: Optional[str] = field(
default=None,
metadata={
"help": "Pretrained config name or path if not the same as model_name"
},
)
cache_dir: Optional[str] = field(
default=None,
metadata={
"help": "Where do you want to store the pretrained models downloaded from the Hub"
},
)
model_revision: str = field(
default="main",
metadata={
"help": "The specific model version to use (can be a branch name, tag name or commit id)."
},
)
feature_extractor_name: Optional[str] = field(
default=None, metadata={"help": "Name or path of preprocessor config."}
)
freeze_feature_encoder: bool = field(
default=True,
metadata={"help": "Whether to freeze the feature encoder layers of the model."},
)
attention_mask: bool = field(
default=True,
metadata={
"help": "Whether to generate an attention mask in the feature extractor."
},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
},
)
freeze_feature_extractor: Optional[bool] = field(
default=None,
metadata={
"help": "Whether to freeze the feature extractor layers of the model."
},
)
ignore_mismatched_sizes: bool = field(
default=False,
metadata={
"help": "Will enable to load a pretrained model whose head dimensions are different."
},
)
def __post_init__(self):
if not self.freeze_feature_extractor and self.freeze_feature_encoder:
warnings.warn(
"The argument `--freeze_feature_extractor` is deprecated and "
"will be removed in a future version. Use `--freeze_feature_encoder`"
"instead. Setting `freeze_feature_encoder==True`.",
FutureWarning,
)
if self.freeze_feature_extractor and not self.freeze_feature_encoder:
raise ValueError(
"The argument `--freeze_feature_extractor` is deprecated and "
"should not be used in combination with `--freeze_feature_encoder`."
"Only make use of `--freeze_feature_encoder`."
)
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser(
(
ModelArguments,
DataTrainingArguments,
TrainingArguments,
DistillationTrainingArguments,
)
)
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args, distil_args = parser.parse_json_file(
json_file=os.path.abspath(sys.argv[1])
)
else:
(
model_args,
data_args,
training_args,
distil_args,
) = parser.parse_args_into_dataclasses()
# copy alpha and temperature values from DistillationTrainingArguments to TrainingArguments
for key, value in asdict(distil_args).items():
setattr(training_args, key, value)
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_audio_classification", model_args, data_args)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} "
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# Set seed before initializing model.
set_seed(training_args.seed)
# Detecting last checkpoint.
last_checkpoint = None
if (
os.path.isdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to train from scratch."
)
elif (
last_checkpoint is not None and training_args.resume_from_checkpoint is None
):
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Initialize our dataset and prepare it for the audio classification task.
raw_datasets = DatasetDict()
raw_datasets["train"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=data_args.train_split_name,
use_auth_token=True if model_args.use_auth_token else None,
)
raw_datasets["eval"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=data_args.eval_split_name,
use_auth_token=True if model_args.use_auth_token else None,
)
if data_args.audio_column_name not in raw_datasets["train"].column_names:
raise ValueError(
f"--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. "
"Make sure to set `--audio_column_name` to the correct audio column - one of "
f"{', '.join(raw_datasets['train'].column_names)}."
)
# Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over
# transformer outputs in the classifier, but it doesn't always lead to better accuracy
feature_extractor = AutoFeatureExtractor.from_pretrained(
model_args.feature_extractor_name or model_args.model_name_or_path,
return_attention_mask=model_args.attention_mask,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
# `datasets` takes care of automatically loading and resampling the audio,
# so we just need to set the correct target sampling rate.
raw_datasets = raw_datasets.cast_column(
data_args.audio_column_name,
datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate),
)
model_input_name = feature_extractor.model_input_names[0]
def preprocess_data(examples):
# get audio arrays
audio_arrays = [x["array"] for x in examples[data_args.audio_column_name]]
# encode batch of audio
inputs = feature_extractor(
audio_arrays, sampling_rate=feature_extractor.sampling_rate
)
# add labels
labels_batch = {k: examples[k] for k in examples.keys() if k in labels}
# create numpy array of shape (batch_size, num_labels)
labels_matrix = np.zeros((len(audio_arrays), len(labels)))
# fill numpy array
for idx, label in enumerate(labels):
labels_matrix[:, idx] = labels_batch[label]
output_batch = {model_input_name: inputs.get(model_input_name)}
output_batch["labels"] = labels_matrix.tolist()
return output_batch
def multi_label_metrics(predictions, labels, threshold=0.5):
# first, apply sigmoid on predictions which are of shape (batch_size, num_labels)
sigmoid = torch.nn.Sigmoid()
probs = sigmoid(torch.Tensor(predictions)).cpu().numpy()
# next, use threshold to turn them into integer predictions
y_pred = np.zeros(probs.shape)
y_pred[np.where(probs >= threshold)] = 1
# finally, compute metrics
f1_micro_average = f1_score(y_true=labels, y_pred=y_pred, average="micro")
roc_auc = roc_auc_score(labels, y_pred, average="micro")
accuracy = accuracy_score(labels, y_pred)
mAP = average_precision_score(labels, probs, average="micro")
# return as dictionary
metrics = {
"f1": f1_micro_average,
"roc_auc": roc_auc,
"accuracy": accuracy,
"mAP": mAP,
}
return metrics
def compute_metrics(p: EvalPrediction):
"""Computes mean average precision (mAP) score"""
preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
result = multi_label_metrics(predictions=preds, labels=p.label_ids)
return result
teacher_config = AutoConfig.from_pretrained(
model_args.config_name or model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
teacher_model = AutoModelForAudioClassification.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=teacher_config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
).to(training_args.device)
labels = list(teacher_config.id2label.values())
layer_num_idx: int = len(distil_args.layer_prefix.split(distil_args.delimiter))
num_hidden_layers: int = len(distil_args.teacher_blocks)
assert num_hidden_layers <= teacher_model.config.num_hidden_layers
student_config = AutoConfig.from_pretrained(
model_args.config_name or model_args.model_name_or_path,
num_hidden_layers=num_hidden_layers,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
student_model = AutoModelForAudioClassification.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=student_config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
)
# initialize student's weights from teacher's
teacher_weights = teacher_model.state_dict()
student_weights = student_model.state_dict()
for name, param in student_weights.items():
if name.startswith(distil_args.layer_prefix):
# split layer name to its components
student_layer_name_comps = name.split(distil_args.delimiter)
student_layer_num = student_layer_name_comps[layer_num_idx]
# replace the layer num with teacher's layer num
student_layer_name_comps[layer_num_idx] = distil_args.teacher_blocks[
int(student_layer_num)
]
# join to get teacher's layer name
teacher_layer_name = distil_args.delimiter.join(student_layer_name_comps)
# in-place copy to student params
param.copy_(teacher_weights[teacher_layer_name])
# freeze the convolutional waveform encoder
if model_args.freeze_feature_encoder:
student_model.freeze_feature_encoder()
if training_args.do_train:
if data_args.max_train_samples is not None:
raw_datasets["train"] = (
raw_datasets["train"]
.shuffle(seed=training_args.seed)
.select(range(data_args.max_train_samples))
)
# Set the training transforms
raw_datasets["train"].set_transform(preprocess_data, output_all_columns=False)
if training_args.do_eval:
if data_args.max_eval_samples is not None:
raw_datasets["eval"] = (
raw_datasets["eval"]
.shuffle(seed=training_args.seed)
.select(range(data_args.max_eval_samples))
)
# Set the validation transforms
raw_datasets["eval"].set_transform(preprocess_data, output_all_columns=False)
# Initialize our trainer
trainer = MultiLabelDistillationTrainer(
model=student_model,
teacher_model=teacher_model,
args=training_args,
train_dataset=raw_datasets["train"] if training_args.do_train else None,
eval_dataset=raw_datasets["eval"] if training_args.do_eval else None,
compute_metrics=compute_metrics,
tokenizer=feature_extractor,
)
# Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model()
trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()
# Evaluation
if training_args.do_eval:
metrics = trainer.evaluate()
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# Write model card and (optionally) push to hub
kwargs = {
"finetuned_from": model_args.model_name_or_path,
"tasks": "audio-classification",
"dataset": data_args.dataset_name,
"tags": ["audio-classification"],
}
if training_args.push_to_hub:
trainer.push_to_hub(**kwargs)
else:
trainer.create_model_card(**kwargs)
if __name__ == "__main__":
main()
|