File size: 3,209 Bytes
eeed9e8 153b714 eeed9e8 153b714 eeed9e8 153b714 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
pipeline_tag: sentence-similarity
language:
- multilingual
- grc
- en
- la
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
---
# SPhilBerta
The paper [Exploring Language Models for Classical Philology](https://aclanthology.org/2023.acl-long.846/) is the first effort to systematically provide state-of-the-art language models for Classical Philology. Using PhilBERTa as a foundation, we introduce SPhilBERTa, a Sentence Transformer model to identify cross-lingual references between Latin and Ancient Greek texts. We employ the knowledge distillation method as proposed by [Reimers and Gurevych (2020)](https://aclanthology.org/2020.emnlp-main.365/). Our paper can be found [here](https://arxiv.org/abs/2308.12008).
## Usage
### Sentence-Transformers
When you have [sentence-transformers](https://www.SBERT.net) installed, you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
### HuggingFace Transformers
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Contact
If you have any questions or problems, feel free to [reach out](mailto:riemenschneider@cl.uni-heidelberg.de).
## Citation
```bibtex
@incollection{riemenschneiderfrank:2023b,
author = "Riemenschneider, Frederick and Frank, Anette",
title = "{Graecia capta ferum victorem cepit. Detecting Latin Allusions to Ancient Greek Literature}",
year = "2023",
url = "https://arxiv.org/abs/2308.12008",
note = "to appear",
publisher = "Association for Computational Linguistics",
booktitle = "Proceedings of the First Workshop on Ancient Language Processing",
address = "Varna, Bulgaria"
}
```
|