File size: 2,448 Bytes
2e3297a
 
dd3d79e
 
 
 
 
 
 
88f3b9d
 
dd3d79e
 
 
 
 
 
 
14775ae
 
dd3d79e
14775ae
 
 
dd3d79e
 
 
 
 
 
 
 
 
 
 
 
 
 
88f3b9d
dd3d79e
88f3b9d
dd3d79e
 
 
 
 
 
 
14775ae
dd3d79e
88f3b9d
dd3d79e
88f3b9d
dd3d79e
 
14775ae
 
 
 
 
 
 
 
 
 
88f3b9d
 
dd3d79e
88f3b9d
14775ae
dd3d79e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: product_description_generator
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# product_description_generator

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.3303
- Rouge1: 0.1597
- Rouge2: 0.0
- Rougel: 0.1349
- Rougelsum: 0.1334
- Gen Len: 18.7

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log        | 1.0   | 6    | 3.5039          | 0.185  | 0.0105 | 0.1573 | 0.1576    | 15.7    |
| No log        | 2.0   | 12   | 3.4680          | 0.1915 | 0.0105 | 0.1747 | 0.174     | 16.9    |
| No log        | 3.0   | 18   | 3.4331          | 0.1579 | 0.0105 | 0.1308 | 0.1282    | 17.4    |
| No log        | 4.0   | 24   | 3.4049          | 0.1579 | 0.0105 | 0.1308 | 0.1282    | 17.8    |
| No log        | 5.0   | 30   | 3.3817          | 0.1716 | 0.0091 | 0.1476 | 0.1434    | 18.5    |
| No log        | 6.0   | 36   | 3.3638          | 0.1323 | 0.0    | 0.1176 | 0.116     | 17.1    |
| No log        | 7.0   | 42   | 3.3497          | 0.1597 | 0.0    | 0.1349 | 0.1334    | 18.7    |
| No log        | 8.0   | 48   | 3.3394          | 0.1597 | 0.0    | 0.1349 | 0.1334    | 18.7    |
| No log        | 9.0   | 54   | 3.3332          | 0.1597 | 0.0    | 0.1349 | 0.1334    | 18.7    |
| No log        | 10.0  | 60   | 3.3303          | 0.1597 | 0.0    | 0.1349 | 0.1334    | 18.7    |


### Framework versions

- Transformers 4.28.0
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3