File size: 7,393 Bytes
064d10d
bd0d6af
 
 
 
 
064d10d
 
 
bd0d6af
 
064d10d
bd0d6af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c572378
bd0d6af
 
 
 
3819ab8
bd0d6af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
---
tags:
- fp8
- vllm
- medical
- med
license: other
license_name: writer-open-model-license
license_link: https://writer.com/legal/open-model-license/
language: 
- en
---

# Palmyra-Med-70B-FP8
This is a quantized version of [Palmyra-Med-70B](https://huggingface.co/Writer/Palmyra-Med-70B), which was developed by Writer.

The original model performance on biomedical benchmarks is 85.87%. 
**This quantized version acheives an average score of 85.62%.**

## Model Overview:
- **Model:** Llama based model finetuned to form Palmyra-X-004 and then again to form Palmyra-Med-70B.
  - **Input:** Text
  - **Output:** Text
- **Model Optimizations:**
  - **Weight quantization:** FP8
  - **Activation quantization:** FP8
- **Intended Use Cases:** Palmyra-Med-70B is intended for non-commercial and research use in English. Instruction tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks.
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
- **License(s):** [writer-open-model-license](https://writer.com/legal/open-model-license/)

### Writer Resources and Technical Documentation:
+ [Writer Blog](https://writer.com/blog/palmyra-med-fin-models/)
+ [Writer Developer Website](https://dev.writer.com/home/models)
+ [Writer AI Studio](https://writer.com/product/ai-studio/)
+ [Palmyra Model API](https://dev.writer.com/api-guides/chat-completion)

### Model Optimizations

[LLM_Compressor](https://github.com/vllm-project/llm-compressor) library.
Using this optimization, the original FP16 weights and linear activations within the transformer blocks are adjusted to FP8, which decreases the model size and VRAM requirements by 50% overall.

## Deployment with vLLM

This model can be deployed using the [vLLM](https://docs.vllm.ai/en/latest/) library, as shown in the example below.

```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer

model_id = "bprice9/Palmyra-Med-70B-FP8"
number_gpus = 2

sampling_params = SamplingParams(temperature=0.0, top_p=0.9, max_tokens=512, stop_token_ids=[128001, 128009])

tokenizer = AutoTokenizer.from_pretrained(model_id)

messages = [
    {"role": "user", "content": "Give a differential for an intrahepatic lesion with early arterial phase enhancement and rapid washout."},
]
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)

llm = LLM(model=model_id, tensor_parallel_size=number_gpus)

outputs = llm.generate(prompts, sampling_params)

generated_text = outputs[0].outputs[0].text
print(generated_text)
```

## Creation

This model was created by applying [LLM Compressor with calibration samples from UltraChat](https://github.com/vllm-project/llm-compressor/blob/sa/big_model_support/examples/big_model_offloading/big_model_w8a8_calibrate.py), as presented in the code below.

```python
import torch
from datasets import load_dataset
from transformers import AutoTokenizer
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot
from llmcompressor.transformers.compression.helpers import (
    calculate_offload_device_map,
    custom_offload_device_map,
)
recipe = """
quant_stage:
    quant_modifiers:
        QuantizationModifier:
            ignore: ["lm_head"]
            config_groups:
                group_0:
                    weights:
                        num_bits: 8
                        type: float
                        strategy: tensor
                        dynamic: false
                        symmetric: true
                    input_activations:
                        num_bits: 8
                        type: float
                        strategy: tensor
                        dynamic: false
                        symmetric: true
                    targets: ["Linear"]
"""
model_stub = "Writer/Palmyra-Med-70B"
model_name = model_stub.split("/")[-1]
device_map = calculate_offload_device_map(
    model_stub, reserve_for_hessians=False, num_gpus=2, torch_dtype=torch.float16
)
model = SparseAutoModelForCausalLM.from_pretrained(
    model_stub, torch_dtype=torch.float16, device_map=device_map
)
tokenizer = AutoTokenizer.from_pretrained(model_stub)
output_dir = f"./{model_name}-FP8"
DATASET_ID = "HuggingFaceH4/ultrachat_200k"
DATASET_SPLIT = "train_sft"
NUM_CALIBRATION_SAMPLES = 128
MAX_SEQUENCE_LENGTH = 4096
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))
def preprocess(example):
    return {
        "text": tokenizer.apply_chat_template(
            example["messages"],
            tokenize=False,
        )
    }
ds = ds.map(preprocess)
def tokenize(sample):
    return tokenizer(
        sample["text"],
        padding=False,
        max_length=MAX_SEQUENCE_LENGTH,
        truncation=True,
        add_special_tokens=False,
    )
ds = ds.map(tokenize, remove_columns=ds.column_names)
oneshot(
    model=model,
    output_dir=output_dir,
    dataset=ds,
    recipe=recipe,
    max_seq_length=MAX_SEQUENCE_LENGTH,
    num_calibration_samples=NUM_CALIBRATION_SAMPLES,
    save_compressed=True,
)
```

## Evaluation

<table>
  <tr>
   <td style="width: 20%;"><strong>Biomedical Benchmark</strong>
   </td>
   <td style="width: 20%;"><strong>Med-PaLM-2 (5-shot)</strong>
   </td>
   <td style="width: 20%;"><strong>GPT-4</strong>
   </td>
   <td style="width: 20%;"><strong>Palmyra-Med-70B (Original FP16)</strong>
   </td>
   <td style="width: 20%;"><strong>Palmyra-Med-70B-FP8 (This Model)</strong>
   </td>
  </tr>
  <tr>
   <td>MMLU Clincal Knowledge
   </td>
   <td>88.3
   </td>
   <td>86.0
   </td>
   <td>90.9
   </td>
   <td>90.2
   </td>
  </tr>
  <tr>
   <td>MMLU Medical Genetics
   </td>
   <td>90.0
   </td>
   <td>91.0
   </td>
   <td>94.0
   </td>
   <td>93.0
   </td>
  </tr>
  <tr>
   <td>MMLU Anatomy
   </td>
   <td>77.8
   </td>
   <td>80.0
   </td>
   <td>83.7
   </td>
   <td>83.7
   </td>
  </tr>
  <tr>
   <td>MMLU Professional Medicine
   </td>
   <td>95.2
   </td>
   <td>93.0
   </td>
   <td>92.7
   </td>
   <td>92.3
   </td>
  </tr>
  <tr>
   <td>MMLU College Biology
   </td>
   <td>94.4
   </td>
   <td>95.1
   </td>
   <td>94.4
   </td>
   <td>93.8
   </td>
  </tr>
  <tr>
   <td>MMLU College Medicine
   </td>
   <td>80.9
   </td>
   <td>76.9
   </td>
   <td>84.4
   </td>
   <td>84.4
   </td>
  </tr>
  <tr>
   <td>MedQA 4-options
   </td>
   <td>79.9
   </td>
   <td>78.9
   </td>
   <td>78.6
   </td>
   <td>79.5
   </td>
  </tr>
  <tr>
   <td>PubMed QA 
   </td>
   <td>79.2
   </td>
   <td>75.2
   </td>
   <td>79.6
   </td>
   <td>78.0
   </td>
  </tr>
  <tr>
  <tr>
   <td>MedMCQA
   </td>
   <td>71.3
   </td>
   <td>69.5
   </td>
   <td>74.4
   </td>
   <td>75.7
   </td>
  </tr>
  <tr>
   <td><strong>Average</strong>
   </td>
   <td><strong>84.1</strong>
   </td>
   <td><strong>82.8</strong>
   </td>
   <td><strong>85.9</strong>
   </td>
   <td><strong>85.6</strong>
   </td>
  </tr>
</table>

### Citation and Related Information Provided by Writer

To cite this model:

```
@misc{Palmyra-Med-70B,
  author = {Writer Engineering team},
  title = {{Palmyra-Med-70b: A powerful LLM designed for healthcare}},
  howpublished = {\url{https://dev.writer.com}},
  year = 2024,
  month = June 
}
```