Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 273.98 +/- 19.13
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0092bd8040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0092bd80d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0092bd8160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0092bd81f0>", "_build": "<function ActorCriticPolicy._build at 0x7f0092bd8280>", "forward": "<function ActorCriticPolicy.forward at 0x7f0092bd8310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0092bd83a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0092bd8430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0092bd84c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0092bd8550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0092bd85e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0092bd35d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673252936173388166, "learning_rate": 0.0009, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/TX2/SH/LkoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNSHL0MW7E/ekkev0xHgr44Q8o8D9vJuwAAAAAAAAAAM3PPut7Jtj/p8KO9rye8PsWs7jomCZM8AAAAAAAAAADAeZW9PYNeu/5EjzyzcaA8efe7vORXiD0AAIA/AACAPxo/y70K5xq5ogvoN4VNATM0KZK76CQKtwAAgD8AAIA/2vsJvvMz5D4pHaC93U+7vlQgy72KP2e9AAAAAAAAAADmwfC99pgcvKpuej5HCPq990iovLymSb4AAIA/AACAP3qFGb446YM+cJm4vJrHRb7NWYy9xrx9PQAAAAAAAAAAo413vo2Juj869ii/3HjKvm5NqL4eH4u+AAAAAAAAAADmlAw9Ni41vGJv/b3SS/Q7zhObPSjb1LwAAIA/AACAP5ohhbwKrZ0/LqoFvseiI79/lwu89KcUuwAAAAAAAAAAgIN8vYyHqj/+T9S+adXYvtCZh729STa+AAAAAAAAAACAV0I9fQy8P7KUkz4w4nG8ycv5PO4fFD4AAAAAAAAAALMwlz3HJVY/1Wi2PGT1FL90DO89peF2uwAAAAAAAAAAxZ6Rvg5fzbwlk9e+/XhPPdvP3j4ioZk+AAAAAAAAAABNVCS+6RlIP6KPj739hxW/KiyYvWU3GDoAAAAAAAAAAADQHjzTAD8/AXeKvO65BL91elY9g8SAPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3UHsTCFmb0CUhpRSlIwBbJRLz4wBdJRHQKJY/ZXdTHd1fZQoaAZoCWgPQwgGn+bkxY9vQJSGlFKUaBVLwGgWR0CiWQOpKjBVdX2UKGgGaAloD0MIk3GMZA85c0CUhpRSlGgVS95oFkdAolkNiONo8XV9lChoBmgJaA9DCBiUaTQ5onFAlIaUUpRoFUv4aBZHQKJZtiPyTZB1fZQoaAZoCWgPQwhVT+Yf/ftwQJSGlFKUaBVLtGgWR0CiWbkvCdjHdX2UKGgGaAloD0MId/NUh9ygRUCUhpRSlGgVS9RoFkdAolnfz19ORHV9lChoBmgJaA9DCLq9pDFaWWxAlIaUUpRoFUvYaBZHQKJagwiaAnV1fZQoaAZoCWgPQwi0WIrkK01xQJSGlFKUaBVL0WgWR0CiWrCliz9kdX2UKGgGaAloD0MI5ljeVY8KckCUhpRSlGgVS9RoFkdAolrF/6O5rnV9lChoBmgJaA9DCPYINUPqwHNAlIaUUpRoFUvyaBZHQKJa0od+5OJ1fZQoaAZoCWgPQwie76fGS31xQJSGlFKUaBVLwGgWR0CiWt/CAMDwdX2UKGgGaAloD0MInRN7aJ+jcECUhpRSlGgVS91oFkdAolslrM1TBXV9lChoBmgJaA9DCML51LGKJ3RAlIaUUpRoFU0SAWgWR0CiW5Vz6rNodX2UKGgGaAloD0MIE4JV9fL7b0CUhpRSlGgVS8loFkdAoluj5TIeYHV9lChoBmgJaA9DCNeIYBxcBnNAlIaUUpRoFUv8aBZHQKJbpN+LFXJ1fZQoaAZoCWgPQwgsnKT54/5xQJSGlFKUaBVNAgFoFkdAolvaEOAiFHV9lChoBmgJaA9DCArbT8a40XFAlIaUUpRoFUvfaBZHQKJb5Sa3I+51fZQoaAZoCWgPQwgyq3e43S1wQJSGlFKUaBVL8mgWR0CiXDn5SFXadX2UKGgGaAloD0MIJ4bkZKITcECUhpRSlGgVS8RoFkdAolxWpEQXh3V9lChoBmgJaA9DCCMva2LBVXFAlIaUUpRoFUveaBZHQKJcqOLBKth1fZQoaAZoCWgPQwjtgVZgSNlrQJSGlFKUaBVNlQFoFkdAoly4vi97GHV9lChoBmgJaA9DCDfg88MIunFAlIaUUpRoFUviaBZHQKJc3cGC7K91fZQoaAZoCWgPQwhQOpFgqjByQJSGlFKUaBVLrmgWR0CiXQ3iR4hVdX2UKGgGaAloD0MIyO4CJUWecECUhpRSlGgVS8doFkdAol1I0l7dBXV9lChoBmgJaA9DCCgoRSt3vG9AlIaUUpRoFUvNaBZHQKJdSNkOI691fZQoaAZoCWgPQwgh5/1/XA1zQJSGlFKUaBVL7mgWR0CiXY243FUAdX2UKGgGaAloD0MID9b/OQyQcUCUhpRSlGgVS+VoFkdAol2/bblA/3V9lChoBmgJaA9DCMri/iOT03FAlIaUUpRoFUu3aBZHQKJtrIEr5Ip1fZQoaAZoCWgPQwhvm6kQD4ZyQJSGlFKUaBVLuGgWR0CibbBXjlxPdX2UKGgGaAloD0MIEyujkc/ab0CUhpRSlGgVS7FoFkdAom3SvcJtznV9lChoBmgJaA9DCJzdWiYDunJAlIaUUpRoFUvzaBZHQKJt/O1v2oN1fZQoaAZoCWgPQwhtc2N6wlVwQJSGlFKUaBVLxmgWR0CibhYLLIPtdX2UKGgGaAloD0MIBADHnr3DcECUhpRSlGgVS8VoFkdAom57JKaodnV9lChoBmgJaA9DCIR/ETRmzXFAlIaUUpRoFU0OAWgWR0CibqkJKJ2udX2UKGgGaAloD0MIQs77/3i+ckCUhpRSlGgVS9FoFkdAom8D+JgssnV9lChoBmgJaA9DCP5fdeQIb3BAlIaUUpRoFUu3aBZHQKJvFKoybhF1fZQoaAZoCWgPQwgTYFj+vIZzQJSGlFKUaBVL3mgWR0CibyCWNWELdX2UKGgGaAloD0MIjSrDuFsSckCUhpRSlGgVS7toFkdAom9hw2l2vHV9lChoBmgJaA9DCNl22hqRDXRAlIaUUpRoFU0eAWgWR0Cib4DTjNpudX2UKGgGaAloD0MIEf5F0JiocECUhpRSlGgVS9NoFkdAonAErqdH2HV9lChoBmgJaA9DCEi/fR24sm5AlIaUUpRoFUvLaBZHQKJwJYukDZF1fZQoaAZoCWgPQwjvcaYJW+1uQJSGlFKUaBVLw2gWR0CicCiNbTttdX2UKGgGaAloD0MI6xnCMUvJbUCUhpRSlGgVTR0BaBZHQKJwNag26091fZQoaAZoCWgPQwhPIOwUK75tQJSGlFKUaBVL0mgWR0CicHZjH4oJdX2UKGgGaAloD0MIaF2j5UAhcUCUhpRSlGgVS6loFkdAonDi7iADrHV9lChoBmgJaA9DCMISDyibKHJAlIaUUpRoFUvgaBZHQKJxiAvtdAx1fZQoaAZoCWgPQwhHqu/8IgNzQJSGlFKUaBVNIQFoFkdAonHgjSofjnV9lChoBmgJaA9DCJAty9flFHJAlIaUUpRoFU0aAWgWR0Cice20Z3s5dX2UKGgGaAloD0MIu31WmSkVc0CUhpRSlGgVS8BoFkdAonI/YHxBmnV9lChoBmgJaA9DCIOHad+c1nXAlIaUUpRoFU1mAWgWR0CicodLQHAzdX2UKGgGaAloD0MIIvq19ROXcUCUhpRSlGgVS/ZoFkdAonKgXQ+lj3V9lChoBmgJaA9DCJ4GDJI+FHJAlIaUUpRoFUvvaBZHQKJy0IKtxMp1fZQoaAZoCWgPQwgKD5pdN5FzQJSGlFKUaBVNqwFoFkdAonLUQwsXi3V9lChoBmgJaA9DCMpqup4oaHJAlIaUUpRoFU0jAWgWR0CiczSbhFVldX2UKGgGaAloD0MIPkLNkCq2cUCUhpRSlGgVS9loFkdAonNHJRwZO3V9lChoBmgJaA9DCDKwjuNHlnBAlIaUUpRoFU0xAWgWR0Cic1PppvgndX2UKGgGaAloD0MIilkvhjJ0ckCUhpRSlGgVS+5oFkdAonNvZyuIRHV9lChoBmgJaA9DCEpfCDmvH3JAlIaUUpRoFU0OAWgWR0Cic+iNKh+OdX2UKGgGaAloD0MIVmXfFcFPcUCUhpRSlGgVTQ8BaBZHQKJz+r5IpYt1fZQoaAZoCWgPQwiXVG03wQdxQJSGlFKUaBVNJwFoFkdAonSUq6OHWXV9lChoBmgJaA9DCN4ehIA8gXFAlIaUUpRoFUvJaBZHQKJ0lI0ZWJd1fZQoaAZoCWgPQwjgL2ZL1mNuQJSGlFKUaBVLt2gWR0CidK2cjJMhdX2UKGgGaAloD0MIaAdcV8yJcECUhpRSlGgVS9doFkdAonTNb9qDb3V9lChoBmgJaA9DCIv8+iE2lkpAlIaUUpRoFUt9aBZHQKJ024xUNrl1fZQoaAZoCWgPQwi3t1uSAzByQJSGlFKUaBVNKAFoFkdAonT/ATIvJ3V9lChoBmgJaA9DCOqwwi2fdnFAlIaUUpRoFUvLaBZHQKJ1JE5Qxet1fZQoaAZoCWgPQwg+B5YjJENyQJSGlFKUaBVLqWgWR0CidYmKhtcfdX2UKGgGaAloD0MIvW987dn6cUCUhpRSlGgVTTwBaBZHQKJ1vzltCRh1fZQoaAZoCWgPQwg0go3r34xwQJSGlFKUaBVL7mgWR0CideDDKoycdX2UKGgGaAloD0MINQ2K5oGMcECUhpRSlGgVS89oFkdAonXzbJwKjXV9lChoBmgJaA9DCOm3rwMnAnNAlIaUUpRoFU0OAWgWR0CidhlV94NadX2UKGgGaAloD0MI7BUW3M94cECUhpRSlGgVS8xoFkdAonaC7VawEHV9lChoBmgJaA9DCHgnnx4bS3JAlIaUUpRoFUvQaBZHQKJ2oUZeiSJ1fZQoaAZoCWgPQwgh6dMqOvxxQJSGlFKUaBVLs2gWR0CidvLvTgEVdX2UKGgGaAloD0MIZp/HKM/8PkCUhpRSlGgVS2JoFkdAonco0XP7enV9lChoBmgJaA9DCNi4/l1fBXNAlIaUUpRoFU1CAWgWR0Cid1R9XtBwdX2UKGgGaAloD0MInL8JhQgGckCUhpRSlGgVS9toFkdAondoS+QEIXV9lChoBmgJaA9DCCV2bW/3+HBAlIaUUpRoFUvqaBZHQKJ3nFspG4J1fZQoaAZoCWgPQwjs3LQZZxBxQJSGlFKUaBVNgAFoFkdAonfM+HJtBXV9lChoBmgJaA9DCGhZ94+F3HFAlIaUUpRoFUvZaBZHQKJ4CGHpKSR1fZQoaAZoCWgPQwhcctwpXUtxQJSGlFKUaBVL+GgWR0CieBu7HyVfdX2UKGgGaAloD0MI5UUm4JeucUCUhpRSlGgVS6toFkdAonhklgMMJHV9lChoBmgJaA9DCM/5KY6D3XJAlIaUUpRoFUvgaBZHQKJ4hoBaLXN1fZQoaAZoCWgPQwjWjAxyVyBxQJSGlFKUaBVL0WgWR0CieImTTvy9dX2UKGgGaAloD0MIevzepr+8ckCUhpRSlGgVTRABaBZHQKJ4kFaB7NV1fZQoaAZoCWgPQwgqj26Exd5yQJSGlFKUaBVNIwFoFkdAonidXPqs2nV9lChoBmgJaA9DCJKtLqdEAnBAlIaUUpRoFUvnaBZHQKJ48G+sYEZ1fZQoaAZoCWgPQwgfSN45lPZvQJSGlFKUaBVLtWgWR0CieUrpJPIodX2UKGgGaAloD0MI+gyoNyMjc0CUhpRSlGgVS99oFkdAonlhlOGj9HV9lChoBmgJaA9DCFnaqblcc3BAlIaUUpRoFUvnaBZHQKJ5nk7wKBx1fZQoaAZoCWgPQwh96lil9NVTQJSGlFKUaBVLe2gWR0Cieh+3pfQbdX2UKGgGaAloD0MIy4Y1lQXIcUCUhpRSlGgVS+hoFkdAonomp4rz5HV9lChoBmgJaA9DCMwHBDrTA3NAlIaUUpRoFUvjaBZHQKJ6PbXYlIF1fZQoaAZoCWgPQwjOx7WhYvZFQJSGlFKUaBVLlGgWR0CiemP/R3NcdX2UKGgGaAloD0MIqrcGtgp0cUCUhpRSlGgVS6loFkdAonqnJcPe6HV9lChoBmgJaA9DCGak3lM5jnNAlIaUUpRoFU0BAWgWR0CievEytV7ydX2UKGgGaAloD0MIcf+R6VCVcUCUhpRSlGgVS/RoFkdAonr0rqdH2HV9lChoBmgJaA9DCMY1PpM9K3JAlIaUUpRoFUvKaBZHQKJ6+GJN0vJ1fZQoaAZoCWgPQwj83qY/u6RwQJSGlFKUaBVNGQFoFkdAonsTXrdFfHV9lChoBmgJaA9DCASuK2aEVyBAlIaUUpRoFUtuaBZHQKJ7HXKbKA91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 738, "n_steps": 1024, "gamma": 0.9995, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 6, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d3ed985e0acda43a6e8b11e39fc5569a9d8a01b27dad3bf246cbcfc88eb26ca5
|
3 |
+
size 147119
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f0092bd8040>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0092bd80d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0092bd8160>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0092bd81f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f0092bd8280>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f0092bd8310>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0092bd83a0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f0092bd8430>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0092bd84c0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0092bd8550>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0092bd85e0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f0092bd35d0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 2015232,
|
46 |
+
"_total_timesteps": 2000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1673252936173388166,
|
51 |
+
"learning_rate": 0.0009,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/TX2/SH/LkoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNSHL0MW7E/ekkev0xHgr44Q8o8D9vJuwAAAAAAAAAAM3PPut7Jtj/p8KO9rye8PsWs7jomCZM8AAAAAAAAAADAeZW9PYNeu/5EjzyzcaA8efe7vORXiD0AAIA/AACAPxo/y70K5xq5ogvoN4VNATM0KZK76CQKtwAAgD8AAIA/2vsJvvMz5D4pHaC93U+7vlQgy72KP2e9AAAAAAAAAADmwfC99pgcvKpuej5HCPq990iovLymSb4AAIA/AACAP3qFGb446YM+cJm4vJrHRb7NWYy9xrx9PQAAAAAAAAAAo413vo2Juj869ii/3HjKvm5NqL4eH4u+AAAAAAAAAADmlAw9Ni41vGJv/b3SS/Q7zhObPSjb1LwAAIA/AACAP5ohhbwKrZ0/LqoFvseiI79/lwu89KcUuwAAAAAAAAAAgIN8vYyHqj/+T9S+adXYvtCZh729STa+AAAAAAAAAACAV0I9fQy8P7KUkz4w4nG8ycv5PO4fFD4AAAAAAAAAALMwlz3HJVY/1Wi2PGT1FL90DO89peF2uwAAAAAAAAAAxZ6Rvg5fzbwlk9e+/XhPPdvP3j4ioZk+AAAAAAAAAABNVCS+6RlIP6KPj739hxW/KiyYvWU3GDoAAAAAAAAAAADQHjzTAD8/AXeKvO65BL91elY9g8SAPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.007616000000000067,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVNRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3UHsTCFmb0CUhpRSlIwBbJRLz4wBdJRHQKJY/ZXdTHd1fZQoaAZoCWgPQwgGn+bkxY9vQJSGlFKUaBVLwGgWR0CiWQOpKjBVdX2UKGgGaAloD0MIk3GMZA85c0CUhpRSlGgVS95oFkdAolkNiONo8XV9lChoBmgJaA9DCBiUaTQ5onFAlIaUUpRoFUv4aBZHQKJZtiPyTZB1fZQoaAZoCWgPQwhVT+Yf/ftwQJSGlFKUaBVLtGgWR0CiWbkvCdjHdX2UKGgGaAloD0MId/NUh9ygRUCUhpRSlGgVS9RoFkdAolnfz19ORHV9lChoBmgJaA9DCLq9pDFaWWxAlIaUUpRoFUvYaBZHQKJagwiaAnV1fZQoaAZoCWgPQwi0WIrkK01xQJSGlFKUaBVL0WgWR0CiWrCliz9kdX2UKGgGaAloD0MI5ljeVY8KckCUhpRSlGgVS9RoFkdAolrF/6O5rnV9lChoBmgJaA9DCPYINUPqwHNAlIaUUpRoFUvyaBZHQKJa0od+5OJ1fZQoaAZoCWgPQwie76fGS31xQJSGlFKUaBVLwGgWR0CiWt/CAMDwdX2UKGgGaAloD0MInRN7aJ+jcECUhpRSlGgVS91oFkdAolslrM1TBXV9lChoBmgJaA9DCML51LGKJ3RAlIaUUpRoFU0SAWgWR0CiW5Vz6rNodX2UKGgGaAloD0MIE4JV9fL7b0CUhpRSlGgVS8loFkdAoluj5TIeYHV9lChoBmgJaA9DCNeIYBxcBnNAlIaUUpRoFUv8aBZHQKJbpN+LFXJ1fZQoaAZoCWgPQwgsnKT54/5xQJSGlFKUaBVNAgFoFkdAolvaEOAiFHV9lChoBmgJaA9DCArbT8a40XFAlIaUUpRoFUvfaBZHQKJb5Sa3I+51fZQoaAZoCWgPQwgyq3e43S1wQJSGlFKUaBVL8mgWR0CiXDn5SFXadX2UKGgGaAloD0MIJ4bkZKITcECUhpRSlGgVS8RoFkdAolxWpEQXh3V9lChoBmgJaA9DCCMva2LBVXFAlIaUUpRoFUveaBZHQKJcqOLBKth1fZQoaAZoCWgPQwjtgVZgSNlrQJSGlFKUaBVNlQFoFkdAoly4vi97GHV9lChoBmgJaA9DCDfg88MIunFAlIaUUpRoFUviaBZHQKJc3cGC7K91fZQoaAZoCWgPQwhQOpFgqjByQJSGlFKUaBVLrmgWR0CiXQ3iR4hVdX2UKGgGaAloD0MIyO4CJUWecECUhpRSlGgVS8doFkdAol1I0l7dBXV9lChoBmgJaA9DCCgoRSt3vG9AlIaUUpRoFUvNaBZHQKJdSNkOI691fZQoaAZoCWgPQwgh5/1/XA1zQJSGlFKUaBVL7mgWR0CiXY243FUAdX2UKGgGaAloD0MID9b/OQyQcUCUhpRSlGgVS+VoFkdAol2/bblA/3V9lChoBmgJaA9DCMri/iOT03FAlIaUUpRoFUu3aBZHQKJtrIEr5Ip1fZQoaAZoCWgPQwhvm6kQD4ZyQJSGlFKUaBVLuGgWR0CibbBXjlxPdX2UKGgGaAloD0MIEyujkc/ab0CUhpRSlGgVS7FoFkdAom3SvcJtznV9lChoBmgJaA9DCJzdWiYDunJAlIaUUpRoFUvzaBZHQKJt/O1v2oN1fZQoaAZoCWgPQwhtc2N6wlVwQJSGlFKUaBVLxmgWR0CibhYLLIPtdX2UKGgGaAloD0MIBADHnr3DcECUhpRSlGgVS8VoFkdAom57JKaodnV9lChoBmgJaA9DCIR/ETRmzXFAlIaUUpRoFU0OAWgWR0CibqkJKJ2udX2UKGgGaAloD0MIQs77/3i+ckCUhpRSlGgVS9FoFkdAom8D+JgssnV9lChoBmgJaA9DCP5fdeQIb3BAlIaUUpRoFUu3aBZHQKJvFKoybhF1fZQoaAZoCWgPQwgTYFj+vIZzQJSGlFKUaBVL3mgWR0CibyCWNWELdX2UKGgGaAloD0MIjSrDuFsSckCUhpRSlGgVS7toFkdAom9hw2l2vHV9lChoBmgJaA9DCNl22hqRDXRAlIaUUpRoFU0eAWgWR0Cib4DTjNpudX2UKGgGaAloD0MIEf5F0JiocECUhpRSlGgVS9NoFkdAonAErqdH2HV9lChoBmgJaA9DCEi/fR24sm5AlIaUUpRoFUvLaBZHQKJwJYukDZF1fZQoaAZoCWgPQwjvcaYJW+1uQJSGlFKUaBVLw2gWR0CicCiNbTttdX2UKGgGaAloD0MI6xnCMUvJbUCUhpRSlGgVTR0BaBZHQKJwNag26091fZQoaAZoCWgPQwhPIOwUK75tQJSGlFKUaBVL0mgWR0CicHZjH4oJdX2UKGgGaAloD0MIaF2j5UAhcUCUhpRSlGgVS6loFkdAonDi7iADrHV9lChoBmgJaA9DCMISDyibKHJAlIaUUpRoFUvgaBZHQKJxiAvtdAx1fZQoaAZoCWgPQwhHqu/8IgNzQJSGlFKUaBVNIQFoFkdAonHgjSofjnV9lChoBmgJaA9DCJAty9flFHJAlIaUUpRoFU0aAWgWR0Cice20Z3s5dX2UKGgGaAloD0MIu31WmSkVc0CUhpRSlGgVS8BoFkdAonI/YHxBmnV9lChoBmgJaA9DCIOHad+c1nXAlIaUUpRoFU1mAWgWR0CicodLQHAzdX2UKGgGaAloD0MIIvq19ROXcUCUhpRSlGgVS/ZoFkdAonKgXQ+lj3V9lChoBmgJaA9DCJ4GDJI+FHJAlIaUUpRoFUvvaBZHQKJy0IKtxMp1fZQoaAZoCWgPQwgKD5pdN5FzQJSGlFKUaBVNqwFoFkdAonLUQwsXi3V9lChoBmgJaA9DCMpqup4oaHJAlIaUUpRoFU0jAWgWR0CiczSbhFVldX2UKGgGaAloD0MIPkLNkCq2cUCUhpRSlGgVS9loFkdAonNHJRwZO3V9lChoBmgJaA9DCDKwjuNHlnBAlIaUUpRoFU0xAWgWR0Cic1PppvgndX2UKGgGaAloD0MIilkvhjJ0ckCUhpRSlGgVS+5oFkdAonNvZyuIRHV9lChoBmgJaA9DCEpfCDmvH3JAlIaUUpRoFU0OAWgWR0Cic+iNKh+OdX2UKGgGaAloD0MIVmXfFcFPcUCUhpRSlGgVTQ8BaBZHQKJz+r5IpYt1fZQoaAZoCWgPQwiXVG03wQdxQJSGlFKUaBVNJwFoFkdAonSUq6OHWXV9lChoBmgJaA9DCN4ehIA8gXFAlIaUUpRoFUvJaBZHQKJ0lI0ZWJd1fZQoaAZoCWgPQwjgL2ZL1mNuQJSGlFKUaBVLt2gWR0CidK2cjJMhdX2UKGgGaAloD0MIaAdcV8yJcECUhpRSlGgVS9doFkdAonTNb9qDb3V9lChoBmgJaA9DCIv8+iE2lkpAlIaUUpRoFUt9aBZHQKJ024xUNrl1fZQoaAZoCWgPQwi3t1uSAzByQJSGlFKUaBVNKAFoFkdAonT/ATIvJ3V9lChoBmgJaA9DCOqwwi2fdnFAlIaUUpRoFUvLaBZHQKJ1JE5Qxet1fZQoaAZoCWgPQwg+B5YjJENyQJSGlFKUaBVLqWgWR0CidYmKhtcfdX2UKGgGaAloD0MIvW987dn6cUCUhpRSlGgVTTwBaBZHQKJ1vzltCRh1fZQoaAZoCWgPQwg0go3r34xwQJSGlFKUaBVL7mgWR0CideDDKoycdX2UKGgGaAloD0MINQ2K5oGMcECUhpRSlGgVS89oFkdAonXzbJwKjXV9lChoBmgJaA9DCOm3rwMnAnNAlIaUUpRoFU0OAWgWR0CidhlV94NadX2UKGgGaAloD0MI7BUW3M94cECUhpRSlGgVS8xoFkdAonaC7VawEHV9lChoBmgJaA9DCHgnnx4bS3JAlIaUUpRoFUvQaBZHQKJ2oUZeiSJ1fZQoaAZoCWgPQwgh6dMqOvxxQJSGlFKUaBVLs2gWR0CidvLvTgEVdX2UKGgGaAloD0MIZp/HKM/8PkCUhpRSlGgVS2JoFkdAonco0XP7enV9lChoBmgJaA9DCNi4/l1fBXNAlIaUUpRoFU1CAWgWR0Cid1R9XtBwdX2UKGgGaAloD0MInL8JhQgGckCUhpRSlGgVS9toFkdAondoS+QEIXV9lChoBmgJaA9DCCV2bW/3+HBAlIaUUpRoFUvqaBZHQKJ3nFspG4J1fZQoaAZoCWgPQwjs3LQZZxBxQJSGlFKUaBVNgAFoFkdAonfM+HJtBXV9lChoBmgJaA9DCGhZ94+F3HFAlIaUUpRoFUvZaBZHQKJ4CGHpKSR1fZQoaAZoCWgPQwhcctwpXUtxQJSGlFKUaBVL+GgWR0CieBu7HyVfdX2UKGgGaAloD0MI5UUm4JeucUCUhpRSlGgVS6toFkdAonhklgMMJHV9lChoBmgJaA9DCM/5KY6D3XJAlIaUUpRoFUvgaBZHQKJ4hoBaLXN1fZQoaAZoCWgPQwjWjAxyVyBxQJSGlFKUaBVL0WgWR0CieImTTvy9dX2UKGgGaAloD0MIevzepr+8ckCUhpRSlGgVTRABaBZHQKJ4kFaB7NV1fZQoaAZoCWgPQwgqj26Exd5yQJSGlFKUaBVNIwFoFkdAonidXPqs2nV9lChoBmgJaA9DCJKtLqdEAnBAlIaUUpRoFUvnaBZHQKJ48G+sYEZ1fZQoaAZoCWgPQwgfSN45lPZvQJSGlFKUaBVLtWgWR0CieUrpJPIodX2UKGgGaAloD0MI+gyoNyMjc0CUhpRSlGgVS99oFkdAonlhlOGj9HV9lChoBmgJaA9DCFnaqblcc3BAlIaUUpRoFUvnaBZHQKJ5nk7wKBx1fZQoaAZoCWgPQwh96lil9NVTQJSGlFKUaBVLe2gWR0Cieh+3pfQbdX2UKGgGaAloD0MIy4Y1lQXIcUCUhpRSlGgVS+hoFkdAonomp4rz5HV9lChoBmgJaA9DCMwHBDrTA3NAlIaUUpRoFUvjaBZHQKJ6PbXYlIF1fZQoaAZoCWgPQwjOx7WhYvZFQJSGlFKUaBVLlGgWR0CiemP/R3NcdX2UKGgGaAloD0MIqrcGtgp0cUCUhpRSlGgVS6loFkdAonqnJcPe6HV9lChoBmgJaA9DCGak3lM5jnNAlIaUUpRoFU0BAWgWR0CievEytV7ydX2UKGgGaAloD0MIcf+R6VCVcUCUhpRSlGgVS/RoFkdAonr0rqdH2HV9lChoBmgJaA9DCMY1PpM9K3JAlIaUUpRoFUvKaBZHQKJ6+GJN0vJ1fZQoaAZoCWgPQwj83qY/u6RwQJSGlFKUaBVNGQFoFkdAonsTXrdFfHV9lChoBmgJaA9DCASuK2aEVyBAlIaUUpRoFUtuaBZHQKJ7HXKbKA91ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 738,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.9995,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 6,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0be47f35b519bbf71556d49005f7c68a613809801f3cc709fa1a2d6bfc07e34a
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe0a5b1ff626b2a46470df402b61aace034906798bade3f5e1e65810963fe8ec
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (203 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 273.9801397229414, "std_reward": 19.129881175883156, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-09T09:10:56.788174"}
|