File size: 2,250 Bytes
563b6bf 697c615 420588d 697c615 9086fec 697c615 420588d 697c615 420588d 563b6bf 420588d 563b6bf 697c615 563b6bf 697c615 420588d 563b6bf 420588d 563b6bf 420588d 563b6bf 420588d 563b6bf 420588d 563b6bf 420588d 563b6bf 420588d 563b6bf 420588d 563b6bf 420588d 563b6bf 420588d 563b6bf 420588d 563b6bf 420588d 563b6bf 420588d 563b6bf 420588d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
library_name: transformers
language:
- spa
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper Tiny 1000 Audios - vfranchis
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Tiny 1000 Audios - vfranchis
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the 1000 audios 1.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5691
- Wer: 30.7692
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 25
- training_steps: 300
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 1.4694 | 0.4 | 25 | 1.0082 | 38.4615 |
| 0.2677 | 0.8 | 50 | 0.7480 | 46.1538 |
| 0.1034 | 1.2 | 75 | 0.6340 | 46.1538 |
| 0.0672 | 1.6 | 100 | 0.6319 | 46.1538 |
| 0.0547 | 2.0 | 125 | 0.5773 | 30.7692 |
| 0.0299 | 2.4 | 150 | 0.5612 | 30.7692 |
| 0.022 | 2.8 | 175 | 0.5784 | 30.7692 |
| 0.0218 | 3.2 | 200 | 0.5702 | 30.7692 |
| 0.0127 | 3.6 | 225 | 0.5721 | 30.7692 |
| 0.013 | 4.0 | 250 | 0.5554 | 30.7692 |
| 0.0084 | 4.4 | 275 | 0.5680 | 30.7692 |
| 0.0102 | 4.8 | 300 | 0.5691 | 30.7692 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
|