File size: 2,250 Bytes
563b6bf
 
697c615
 
420588d
697c615
9086fec
 
697c615
 
420588d
697c615
420588d
563b6bf
 
420588d
 
563b6bf
697c615
563b6bf
697c615
420588d
 
 
563b6bf
420588d
563b6bf
420588d
563b6bf
420588d
563b6bf
420588d
563b6bf
420588d
563b6bf
420588d
563b6bf
420588d
563b6bf
420588d
563b6bf
420588d
 
 
 
 
 
 
 
 
 
 
 
563b6bf
420588d
563b6bf
420588d
 
 
 
 
 
 
 
 
 
 
 
 
 
563b6bf
 
420588d
563b6bf
420588d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
library_name: transformers
language:
- spa
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper Tiny 1000 Audios - vfranchis
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Tiny 1000 Audios - vfranchis

This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the 1000 audios 1.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5691
- Wer: 30.7692

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 25
- training_steps: 300
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 1.4694        | 0.4   | 25   | 1.0082          | 38.4615 |
| 0.2677        | 0.8   | 50   | 0.7480          | 46.1538 |
| 0.1034        | 1.2   | 75   | 0.6340          | 46.1538 |
| 0.0672        | 1.6   | 100  | 0.6319          | 46.1538 |
| 0.0547        | 2.0   | 125  | 0.5773          | 30.7692 |
| 0.0299        | 2.4   | 150  | 0.5612          | 30.7692 |
| 0.022         | 2.8   | 175  | 0.5784          | 30.7692 |
| 0.0218        | 3.2   | 200  | 0.5702          | 30.7692 |
| 0.0127        | 3.6   | 225  | 0.5721          | 30.7692 |
| 0.013         | 4.0   | 250  | 0.5554          | 30.7692 |
| 0.0084        | 4.4   | 275  | 0.5680          | 30.7692 |
| 0.0102        | 4.8   | 300  | 0.5691          | 30.7692 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1