File size: 5,820 Bytes
e189beb
 
 
db01457
c60ac86
db01457
 
c60ac86
 
e189beb
db01457
 
e189beb
 
db01457
 
c3e0d53
e189beb
 
c60ac86
e189beb
db01457
e189beb
c60ac86
 
 
 
 
 
 
 
 
 
 
 
e189beb
 
 
e93f381
 
 
 
b0f1be3
e93f381
 
 
b0f1be3
e93f381
 
 
 
e189beb
db01457
e189beb
db01457
 
e189beb
 
 
 
db01457
 
e189beb
 
 
c83c22a
e189beb
db01457
e189beb
db01457
e189beb
c83c22a
e189beb
c60ac86
9dbbdda
 
db01457
 
e189beb
27d7335
db01457
e189beb
db01457
 
e189beb
db01457
 
e189beb
db01457
 
 
 
e189beb
c60ac86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e189beb
 
c83c22a
e189beb
db01457
e189beb
 
 
db01457
e189beb
c83c22a
e189beb
db01457
e189beb
 
 
db01457
e189beb
c83c22a
e189beb
db01457
e189beb
 
 
db01457
e189beb
 
 
c83c22a
e189beb
c83c22a
e189beb
db01457
e189beb
db01457
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
---
tags:
- vision
- coin
- clip
- coin-retrieval
- coin-recognition
- coin-search-engine
- multi-modal learning
widget:
- src: >-
    https://huggingface.co/datasets/mishig/sample_images/resolve/main/cat-dog-music.png
  candidate_labels: playing music, playing sports
  example_title: Cat & Dog
license: apache-2.0
library_name: transformers
pipeline_tag: feature-extraction
---

# Coin-CLIP 🪙 : Enhancing Coin Image Retrieval with CLIP

## Model Details / 模型细节

This model (**Coin-CLIP**) is built upon 
OpenAI's **[CLIP](https://huggingface.co/openai/clip-vit-base-patch32) (ViT-B/32)** model and fine-tuned on 
a dataset of more than `340,000` coin images using contrastive learning techniques. This specialized model is designed to significantly improve feature extraction for coin images, leading to more accurate image-based search capabilities. Coin-CLIP combines the power of Visual Transformer (ViT) with CLIP's multimodal learning capabilities, specifically tailored for the numismatic domain.

**Key Features:**
- State-of-the-art coin image retrieval;
- Enhanced feature extraction for numismatic images;
- Seamless integration with CLIP's multimodal learning.

本模型(**Coin-CLIP**)
在 OpenAI 的 **[CLIP](https://huggingface.co/openai/clip-vit-base-patch32) (ViT-B/32)** 模型基础上,利用对比学习技术在超过 `340,000` 张硬币图片数据上微调得到的。
**Coin-CLIP** 旨在提高模型针对硬币图片的特征提取能力,从而实现更准确的以图搜图功能。该模型结合了视觉变换器(ViT)的强大功能和 CLIP 的多模态学习能力,并专门针对硬币图片进行了优化。



## Comparison: Coin-CLIP vs. CLIP / 效果对比

#### Example 1 (Left: Coin-CLIP; Right: CLIP)

![1. Coin-CLIP vs. CLIP](https://www.notion.so/image/https%3A%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F9341931a-53f0-48e1-b026-0f1ad17b457c%2F4b047305-0bf2-4809-acc6-94fd412d5307%2FUntitled.gif?table=block&id=78225b2b-49b4-4a18-b33c-c4530a6e8330)

#### Example 2 (Left: Coin-CLIP; Right: CLIP)

![2. Coin-CLIP vs. CLIP](https://www.notion.so/image/https%3A%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F9341931a-53f0-48e1-b026-0f1ad17b457c%2F14376459-bedd-4d82-a178-fde391fd70d0%2FUntitled.gif?table=block&id=99ed5179-bcab-4c58-b6d8-1a77bffe79f7)

More examples can be found: [breezedeus/Coin-CLIP: Coin CLIP](https://github.com/breezedeus/Coin-CLIP) .



## Usage and Limitations / 使用和限制

- **Usage**: This model is primarily used for extracting representation vectors from coin images, enabling efficient and precise image-based searches in a coin image database.
- **Limitations**: As the model is trained specifically on coin images, it may not perform well on non-coin images.




- **用途**:此模型主要用于提取硬币图片的表示向量,以实现在硬币图像库中进行高效、精确的以图搜图。
- **限制**:由于模型是针对硬币图像进行训练的,因此在处理非硬币图像时可能效果不佳。



## Documents / 文档

- Base Model: [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32)

  

## Model Use / 模型使用

### Transformers

```python
from PIL import Image
import requests

import torch.nn.functional as F
from transformers import CLIPProcessor, CLIPModel

model = CLIPModel.from_pretrained("breezedeus/coin-clip-vit-base-patch32")
processor = CLIPProcessor.from_pretrained("breezedeus/coin-clip-vit-base-patch32")

image_fp = "path/to/coin_image.jpg"
image = Image.open(image_fp).convert("RGB")

inputs = processor(images=image, return_tensors="pt")
img_features = model.get_image_features(**inputs)
img_features = F.normalize(img_features, dim=1)
```

### Tool / 工具

To further simplify the use of the **Coin-CLIP** model, we provide a simple Python library [breezedeus/Coin-CLIP: Coin CLIP](https://github.com/breezedeus/Coin-CLIP) for quickly building a coin image retrieval engine.

为了进一步简化 **Coin-CLIP** 模型的使用,我们提供了一个简单的 Python 库 [breezedeus/Coin-CLIP: Coin CLIP](https://github.com/breezedeus/Coin-CLIP),以便快速构建硬币图像检索引擎。

#### Install

```bash
pip install coin_clip
```


#### Extract Feature Vectors

```python
from coin_clip import CoinClip

# Automatically download the model from Huggingface
model = CoinClip(model_name='breezedeus/coin-clip-vit-base-patch32')
images = ['examples/10_back.jpg', 'examples/16_back.jpg']
img_feats, success_ids = model.get_image_features(images)
print(img_feats.shape)  # --> (2, 512)
```

More Tools can be found: [breezedeus/Coin-CLIP: Coin CLIP](https://github.com/breezedeus/Coin-CLIP) .


## Training Data / 训练数据

The model was trained on a specialized coin image dataset. This dataset includes images of various currencies' coins.



本模型使用的是专门的硬币图像数据集进行训练。这个数据集包含了多种货币的硬币图片。

## Training Process / 训练过程

The model was fine-tuned on the OpenAI CLIP (ViT-B/32) pretrained model using a coin image dataset. The training process involved Contrastive Learning fine-tuning techniques and parameter settings.



模型是在 OpenAI 的 CLIP (ViT-B/32) 预训练模型的基础上,使用硬币图像数据集进行微调。训练过程采用了对比学习的微调技巧和参数设置。

## Performance / 性能

This model demonstrates excellent performance in coin image retrieval tasks. 



该模型在硬币图像检索任务上展现了优异的性能。



## Feedback / 反馈

> Where to send questions or comments about the model.

Welcome to contact the author [Breezedeus](https://www.breezedeus.com/join-group).

欢迎联系作者  [Breezedeus](https://www.breezedeus.com/join-group) 。