brema76 commited on
Commit
af2df4b
1 Parent(s): b66b004

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -4
README.md CHANGED
@@ -1,15 +1,16 @@
1
-
2
  ---
3
  tags:
4
  - bertopic
5
  library_name: bertopic
6
  pipeline_tag: text-classification
 
7
  ---
8
 
9
  # topic_immigration_it
10
 
11
- This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model.
12
- BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
 
13
 
14
  ## Usage
15
 
@@ -26,6 +27,9 @@ from bertopic import BERTopic
26
  topic_model = BERTopic.load("brema76/topic_immigration_it")
27
 
28
  topic_model.get_topic_info()
 
 
 
29
  ```
30
 
31
  ## Topic overview
@@ -100,4 +104,4 @@ topic_model.get_topic_info()
100
  * Transformers: 4.33.1
101
  * Numba: 0.56.4
102
  * Plotly: 5.16.1
103
- * Python: 3.10.11
 
 
1
  ---
2
  tags:
3
  - bertopic
4
  library_name: bertopic
5
  pipeline_tag: text-classification
6
+ license: gpl-3.0
7
  ---
8
 
9
  # topic_immigration_it
10
 
11
+ This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model built as part of the European project [VALAWAI](www.valawai.eu) and designed for predicting the topic distribution of immigration-related content in Italian language.<br>
12
+ The model includes a pointer towards the model to be loaded in with SentenceTransformers, i.e., "sentence-transformers/paraphrase-multilingual-mpnet-base-v2".<br>
13
+ The model was fine-tuned on a comprehensive set of tweets representing the information provided by both political entities and news sources on the immigration subject during the 5-year period 2018-2022.
14
 
15
  ## Usage
16
 
 
27
  topic_model = BERTopic.load("brema76/topic_immigration_it")
28
 
29
  topic_model.get_topic_info()
30
+
31
+ example_text = "Questo è un esempio di testo sul topic immigrazione, subtopic sbarchi e accoglienza."
32
+ topics, probs = topic_model.transform(example_text)
33
  ```
34
 
35
  ## Topic overview
 
104
  * Transformers: 4.33.1
105
  * Numba: 0.56.4
106
  * Plotly: 5.16.1
107
+ * Python: 3.10.11