File size: 1,814 Bytes
b2be6d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-base-demo-colab
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-base-demo-colab

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3944
- Wer: 0.3142

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.4086        | 3.45  | 500  | 1.1494          | 0.8509 |
| 0.5968        | 6.9   | 1000 | 0.4306          | 0.4169 |
| 0.2363        | 10.34 | 1500 | 0.3820          | 0.3669 |
| 0.1365        | 13.79 | 2000 | 0.3863          | 0.3487 |
| 0.0916        | 17.24 | 2500 | 0.3851          | 0.3391 |
| 0.0704        | 20.69 | 3000 | 0.3759          | 0.3271 |
| 0.0537        | 24.14 | 3500 | 0.3747          | 0.3222 |
| 0.0413        | 27.59 | 4000 | 0.3944          | 0.3142 |


### Framework versions

- Transformers 4.11.3
- Pytorch 1.11.0+cu113
- Datasets 1.14.0
- Tokenizers 0.10.3