mokady commited on
Commit
8fe881b
1 Parent(s): 9b823f8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +39 -1
README.md CHANGED
@@ -76,7 +76,7 @@ Contact us today to unlock the potential of BRIA 2.3 FAST-LORA! By submitting th
76
 
77
 
78
 
79
- ### Code example using Diffusers
80
 
81
 
82
  ```
@@ -98,4 +98,42 @@ pipe.to("cuda")
98
  prompt = "A portrait of a Beautiful and playful ethereal singer, golden designs, highly detailed, blurry background"
99
 
100
  image = pipe(prompt, num_inference_steps=8, guidance_scale=0.0).images[0]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101
  ```
 
76
 
77
 
78
 
79
+ # Code example using Diffusers
80
 
81
 
82
  ```
 
98
  prompt = "A portrait of a Beautiful and playful ethereal singer, golden designs, highly detailed, blurry background"
99
 
100
  image = pipe(prompt, num_inference_steps=8, guidance_scale=0.0).images[0]
101
+ ```
102
+
103
+
104
+ # Using both LCM LORA and ControlNet
105
+
106
+
107
+ ```
108
+ condition_image_path = "A_dog.png"
109
+ prompt = "A white dog"
110
+ seed = 222
111
+ w, h = 1024, 1024
112
+
113
+ controlnet = ControlNetModel.from_pretrained(
114
+ "briaai/BRIA-2.3-ControlNet-Canny",
115
+ torch_dtype=torch.float16
116
+ )
117
+ pipe = StableDiffusionXLControlNetPipeline.from_pretrained("briaai/BRIA-2.3", controlnet=controlnet, torch_dtype=torch.float16)
118
+
119
+
120
+ pipe.load_lora_weights("briaai/BRIA-2.3-FAST-LORA")
121
+ pipe.fuse_lora()
122
+ pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
123
+ pipe.force_zeros_for_empty_prompt = False
124
+ pipe.to("cuda")
125
+
126
+ negative_prompt = "Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers"
127
+ generator = torch.Generator("cuda").manual_seed(seed)
128
+
129
+ # Calculate Canny image
130
+ low_threshold, high_threshold = 100, 200
131
+ input_image = cv2.imread(condition_image_path)
132
+ input_image = cv2.Canny(input_image, low_threshold, high_threshold)
133
+ input_image = input_image[:, :, None]
134
+ input_image = np.concatenate([input_image, input_image, input_image], axis=2)
135
+ condition_image = Image.fromarray(input_image)
136
+
137
+ #Generate
138
+ image = pipe(prompt, image=condition_image, controlnet_conditioning_scale=1.0, num_inference_steps=8, width=w,height=h, guidance_scale=0.0, negative_prompt=negative_prompt, generator=generator,).images[0]
139
  ```