Delete models/isnet.py
Browse files- models/isnet.py +0 -611
models/isnet.py
DELETED
@@ -1,611 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
from torchvision import models
|
4 |
-
import torch.nn.functional as F
|
5 |
-
|
6 |
-
|
7 |
-
bce_loss = nn.BCELoss(size_average=True)
|
8 |
-
def muti_loss_fusion(preds, target):
|
9 |
-
loss0 = 0.0
|
10 |
-
loss = 0.0
|
11 |
-
|
12 |
-
for i in range(0,len(preds)):
|
13 |
-
# print("i: ", i, preds[i].shape)
|
14 |
-
if(preds[i].shape[2]!=target.shape[2] or preds[i].shape[3]!=target.shape[3]):
|
15 |
-
# tmp_target = _upsample_like(target,preds[i])
|
16 |
-
tmp_target = F.interpolate(target, size=preds[i].size()[2:], mode='bilinear', align_corners=True)
|
17 |
-
loss = loss + bce_loss(preds[i],tmp_target)
|
18 |
-
else:
|
19 |
-
loss = loss + bce_loss(preds[i],target)
|
20 |
-
if(i==0):
|
21 |
-
loss0 = loss
|
22 |
-
return loss0, loss
|
23 |
-
|
24 |
-
fea_loss = nn.MSELoss(size_average=True)
|
25 |
-
kl_loss = nn.KLDivLoss(size_average=True)
|
26 |
-
l1_loss = nn.L1Loss(size_average=True)
|
27 |
-
smooth_l1_loss = nn.SmoothL1Loss(size_average=True)
|
28 |
-
def muti_loss_fusion_kl(preds, target, dfs, fs, mode='MSE'):
|
29 |
-
loss0 = 0.0
|
30 |
-
loss = 0.0
|
31 |
-
|
32 |
-
for i in range(0,len(preds)):
|
33 |
-
# print("i: ", i, preds[i].shape)
|
34 |
-
if(preds[i].shape[2]!=target.shape[2] or preds[i].shape[3]!=target.shape[3]):
|
35 |
-
# tmp_target = _upsample_like(target,preds[i])
|
36 |
-
tmp_target = F.interpolate(target, size=preds[i].size()[2:], mode='bilinear', align_corners=True)
|
37 |
-
loss = loss + bce_loss(preds[i],tmp_target)
|
38 |
-
else:
|
39 |
-
loss = loss + bce_loss(preds[i],target)
|
40 |
-
if(i==0):
|
41 |
-
loss0 = loss
|
42 |
-
|
43 |
-
for i in range(0,len(dfs)):
|
44 |
-
if(mode=='MSE'):
|
45 |
-
loss = loss + fea_loss(dfs[i],fs[i]) ### add the mse loss of features as additional constraints
|
46 |
-
# print("fea_loss: ", fea_loss(dfs[i],fs[i]).item())
|
47 |
-
elif(mode=='KL'):
|
48 |
-
loss = loss + kl_loss(F.log_softmax(dfs[i],dim=1),F.softmax(fs[i],dim=1))
|
49 |
-
# print("kl_loss: ", kl_loss(F.log_softmax(dfs[i],dim=1),F.softmax(fs[i],dim=1)).item())
|
50 |
-
elif(mode=='MAE'):
|
51 |
-
loss = loss + l1_loss(dfs[i],fs[i])
|
52 |
-
# print("ls_loss: ", l1_loss(dfs[i],fs[i]))
|
53 |
-
elif(mode=='SmoothL1'):
|
54 |
-
loss = loss + smooth_l1_loss(dfs[i],fs[i])
|
55 |
-
# print("SmoothL1: ", smooth_l1_loss(dfs[i],fs[i]).item())
|
56 |
-
|
57 |
-
return loss0, loss
|
58 |
-
|
59 |
-
class REBNCONV(nn.Module):
|
60 |
-
def __init__(self,in_ch=3,out_ch=3,dirate=1,stride=1):
|
61 |
-
super(REBNCONV,self).__init__()
|
62 |
-
|
63 |
-
self.conv_s1 = nn.Conv2d(in_ch,out_ch,3,padding=1*dirate,dilation=1*dirate,stride=stride)
|
64 |
-
self.bn_s1 = nn.BatchNorm2d(out_ch)
|
65 |
-
self.relu_s1 = nn.ReLU(inplace=True)
|
66 |
-
|
67 |
-
def forward(self,x):
|
68 |
-
|
69 |
-
hx = x
|
70 |
-
xout = self.relu_s1(self.bn_s1(self.conv_s1(hx)))
|
71 |
-
|
72 |
-
return xout
|
73 |
-
|
74 |
-
## upsample tensor 'src' to have the same spatial size with tensor 'tar'
|
75 |
-
def _upsample_like(src,tar):
|
76 |
-
|
77 |
-
src = F.upsample(src,size=tar.shape[2:],mode='bilinear')
|
78 |
-
|
79 |
-
return src
|
80 |
-
|
81 |
-
|
82 |
-
### RSU-7 ###
|
83 |
-
class RSU7(nn.Module):
|
84 |
-
|
85 |
-
def __init__(self, in_ch=3, mid_ch=12, out_ch=3, img_size=512):
|
86 |
-
super(RSU7,self).__init__()
|
87 |
-
|
88 |
-
self.in_ch = in_ch
|
89 |
-
self.mid_ch = mid_ch
|
90 |
-
self.out_ch = out_ch
|
91 |
-
|
92 |
-
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1) ## 1 -> 1/2
|
93 |
-
|
94 |
-
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
95 |
-
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
96 |
-
|
97 |
-
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
98 |
-
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
99 |
-
|
100 |
-
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
101 |
-
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
102 |
-
|
103 |
-
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
104 |
-
self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
105 |
-
|
106 |
-
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
107 |
-
self.pool5 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
108 |
-
|
109 |
-
self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
110 |
-
|
111 |
-
self.rebnconv7 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
112 |
-
|
113 |
-
self.rebnconv6d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
114 |
-
self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
115 |
-
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
116 |
-
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
117 |
-
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
118 |
-
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
119 |
-
|
120 |
-
def forward(self,x):
|
121 |
-
b, c, h, w = x.shape
|
122 |
-
|
123 |
-
hx = x
|
124 |
-
hxin = self.rebnconvin(hx)
|
125 |
-
|
126 |
-
hx1 = self.rebnconv1(hxin)
|
127 |
-
hx = self.pool1(hx1)
|
128 |
-
|
129 |
-
hx2 = self.rebnconv2(hx)
|
130 |
-
hx = self.pool2(hx2)
|
131 |
-
|
132 |
-
hx3 = self.rebnconv3(hx)
|
133 |
-
hx = self.pool3(hx3)
|
134 |
-
|
135 |
-
hx4 = self.rebnconv4(hx)
|
136 |
-
hx = self.pool4(hx4)
|
137 |
-
|
138 |
-
hx5 = self.rebnconv5(hx)
|
139 |
-
hx = self.pool5(hx5)
|
140 |
-
|
141 |
-
hx6 = self.rebnconv6(hx)
|
142 |
-
|
143 |
-
hx7 = self.rebnconv7(hx6)
|
144 |
-
|
145 |
-
hx6d = self.rebnconv6d(torch.cat((hx7,hx6),1))
|
146 |
-
hx6dup = _upsample_like(hx6d,hx5)
|
147 |
-
|
148 |
-
hx5d = self.rebnconv5d(torch.cat((hx6dup,hx5),1))
|
149 |
-
hx5dup = _upsample_like(hx5d,hx4)
|
150 |
-
|
151 |
-
hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1))
|
152 |
-
hx4dup = _upsample_like(hx4d,hx3)
|
153 |
-
|
154 |
-
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
155 |
-
hx3dup = _upsample_like(hx3d,hx2)
|
156 |
-
|
157 |
-
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
158 |
-
hx2dup = _upsample_like(hx2d,hx1)
|
159 |
-
|
160 |
-
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
161 |
-
|
162 |
-
return hx1d + hxin
|
163 |
-
|
164 |
-
|
165 |
-
### RSU-6 ###
|
166 |
-
class RSU6(nn.Module):
|
167 |
-
|
168 |
-
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
169 |
-
super(RSU6,self).__init__()
|
170 |
-
|
171 |
-
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
172 |
-
|
173 |
-
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
174 |
-
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
175 |
-
|
176 |
-
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
177 |
-
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
178 |
-
|
179 |
-
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
180 |
-
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
181 |
-
|
182 |
-
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
183 |
-
self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
184 |
-
|
185 |
-
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
186 |
-
|
187 |
-
self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
188 |
-
|
189 |
-
self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
190 |
-
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
191 |
-
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
192 |
-
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
193 |
-
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
194 |
-
|
195 |
-
def forward(self,x):
|
196 |
-
|
197 |
-
hx = x
|
198 |
-
|
199 |
-
hxin = self.rebnconvin(hx)
|
200 |
-
|
201 |
-
hx1 = self.rebnconv1(hxin)
|
202 |
-
hx = self.pool1(hx1)
|
203 |
-
|
204 |
-
hx2 = self.rebnconv2(hx)
|
205 |
-
hx = self.pool2(hx2)
|
206 |
-
|
207 |
-
hx3 = self.rebnconv3(hx)
|
208 |
-
hx = self.pool3(hx3)
|
209 |
-
|
210 |
-
hx4 = self.rebnconv4(hx)
|
211 |
-
hx = self.pool4(hx4)
|
212 |
-
|
213 |
-
hx5 = self.rebnconv5(hx)
|
214 |
-
|
215 |
-
hx6 = self.rebnconv6(hx5)
|
216 |
-
|
217 |
-
|
218 |
-
hx5d = self.rebnconv5d(torch.cat((hx6,hx5),1))
|
219 |
-
hx5dup = _upsample_like(hx5d,hx4)
|
220 |
-
|
221 |
-
hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1))
|
222 |
-
hx4dup = _upsample_like(hx4d,hx3)
|
223 |
-
|
224 |
-
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
225 |
-
hx3dup = _upsample_like(hx3d,hx2)
|
226 |
-
|
227 |
-
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
228 |
-
hx2dup = _upsample_like(hx2d,hx1)
|
229 |
-
|
230 |
-
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
231 |
-
|
232 |
-
return hx1d + hxin
|
233 |
-
|
234 |
-
### RSU-5 ###
|
235 |
-
class RSU5(nn.Module):
|
236 |
-
|
237 |
-
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
238 |
-
super(RSU5,self).__init__()
|
239 |
-
|
240 |
-
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
241 |
-
|
242 |
-
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
243 |
-
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
244 |
-
|
245 |
-
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
246 |
-
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
247 |
-
|
248 |
-
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
249 |
-
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
250 |
-
|
251 |
-
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
252 |
-
|
253 |
-
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
254 |
-
|
255 |
-
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
256 |
-
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
257 |
-
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
258 |
-
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
259 |
-
|
260 |
-
def forward(self,x):
|
261 |
-
|
262 |
-
hx = x
|
263 |
-
|
264 |
-
hxin = self.rebnconvin(hx)
|
265 |
-
|
266 |
-
hx1 = self.rebnconv1(hxin)
|
267 |
-
hx = self.pool1(hx1)
|
268 |
-
|
269 |
-
hx2 = self.rebnconv2(hx)
|
270 |
-
hx = self.pool2(hx2)
|
271 |
-
|
272 |
-
hx3 = self.rebnconv3(hx)
|
273 |
-
hx = self.pool3(hx3)
|
274 |
-
|
275 |
-
hx4 = self.rebnconv4(hx)
|
276 |
-
|
277 |
-
hx5 = self.rebnconv5(hx4)
|
278 |
-
|
279 |
-
hx4d = self.rebnconv4d(torch.cat((hx5,hx4),1))
|
280 |
-
hx4dup = _upsample_like(hx4d,hx3)
|
281 |
-
|
282 |
-
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
283 |
-
hx3dup = _upsample_like(hx3d,hx2)
|
284 |
-
|
285 |
-
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
286 |
-
hx2dup = _upsample_like(hx2d,hx1)
|
287 |
-
|
288 |
-
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
289 |
-
|
290 |
-
return hx1d + hxin
|
291 |
-
|
292 |
-
### RSU-4 ###
|
293 |
-
class RSU4(nn.Module):
|
294 |
-
|
295 |
-
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
296 |
-
super(RSU4,self).__init__()
|
297 |
-
|
298 |
-
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
299 |
-
|
300 |
-
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
301 |
-
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
302 |
-
|
303 |
-
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
304 |
-
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
305 |
-
|
306 |
-
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
307 |
-
|
308 |
-
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
309 |
-
|
310 |
-
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
311 |
-
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
312 |
-
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
313 |
-
|
314 |
-
def forward(self,x):
|
315 |
-
|
316 |
-
hx = x
|
317 |
-
|
318 |
-
hxin = self.rebnconvin(hx)
|
319 |
-
|
320 |
-
hx1 = self.rebnconv1(hxin)
|
321 |
-
hx = self.pool1(hx1)
|
322 |
-
|
323 |
-
hx2 = self.rebnconv2(hx)
|
324 |
-
hx = self.pool2(hx2)
|
325 |
-
|
326 |
-
hx3 = self.rebnconv3(hx)
|
327 |
-
|
328 |
-
hx4 = self.rebnconv4(hx3)
|
329 |
-
|
330 |
-
hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1))
|
331 |
-
hx3dup = _upsample_like(hx3d,hx2)
|
332 |
-
|
333 |
-
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
334 |
-
hx2dup = _upsample_like(hx2d,hx1)
|
335 |
-
|
336 |
-
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
337 |
-
|
338 |
-
return hx1d + hxin
|
339 |
-
|
340 |
-
### RSU-4F ###
|
341 |
-
class RSU4F(nn.Module):
|
342 |
-
|
343 |
-
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
344 |
-
super(RSU4F,self).__init__()
|
345 |
-
|
346 |
-
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
347 |
-
|
348 |
-
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
349 |
-
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
350 |
-
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=4)
|
351 |
-
|
352 |
-
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=8)
|
353 |
-
|
354 |
-
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=4)
|
355 |
-
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=2)
|
356 |
-
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
357 |
-
|
358 |
-
def forward(self,x):
|
359 |
-
|
360 |
-
hx = x
|
361 |
-
|
362 |
-
hxin = self.rebnconvin(hx)
|
363 |
-
|
364 |
-
hx1 = self.rebnconv1(hxin)
|
365 |
-
hx2 = self.rebnconv2(hx1)
|
366 |
-
hx3 = self.rebnconv3(hx2)
|
367 |
-
|
368 |
-
hx4 = self.rebnconv4(hx3)
|
369 |
-
|
370 |
-
hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1))
|
371 |
-
hx2d = self.rebnconv2d(torch.cat((hx3d,hx2),1))
|
372 |
-
hx1d = self.rebnconv1d(torch.cat((hx2d,hx1),1))
|
373 |
-
|
374 |
-
return hx1d + hxin
|
375 |
-
|
376 |
-
|
377 |
-
class myrebnconv(nn.Module):
|
378 |
-
def __init__(self, in_ch=3,
|
379 |
-
out_ch=1,
|
380 |
-
kernel_size=3,
|
381 |
-
stride=1,
|
382 |
-
padding=1,
|
383 |
-
dilation=1,
|
384 |
-
groups=1):
|
385 |
-
super(myrebnconv,self).__init__()
|
386 |
-
|
387 |
-
self.conv = nn.Conv2d(in_ch,
|
388 |
-
out_ch,
|
389 |
-
kernel_size=kernel_size,
|
390 |
-
stride=stride,
|
391 |
-
padding=padding,
|
392 |
-
dilation=dilation,
|
393 |
-
groups=groups)
|
394 |
-
self.bn = nn.BatchNorm2d(out_ch)
|
395 |
-
self.rl = nn.ReLU(inplace=True)
|
396 |
-
|
397 |
-
def forward(self,x):
|
398 |
-
return self.rl(self.bn(self.conv(x)))
|
399 |
-
|
400 |
-
|
401 |
-
class ISNetGTEncoder(nn.Module):
|
402 |
-
|
403 |
-
def __init__(self,in_ch=1,out_ch=1):
|
404 |
-
super(ISNetGTEncoder,self).__init__()
|
405 |
-
|
406 |
-
self.conv_in = myrebnconv(in_ch,16,3,stride=2,padding=1) # nn.Conv2d(in_ch,64,3,stride=2,padding=1)
|
407 |
-
|
408 |
-
self.stage1 = RSU7(16,16,64)
|
409 |
-
self.pool12 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
410 |
-
|
411 |
-
self.stage2 = RSU6(64,16,64)
|
412 |
-
self.pool23 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
413 |
-
|
414 |
-
self.stage3 = RSU5(64,32,128)
|
415 |
-
self.pool34 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
416 |
-
|
417 |
-
self.stage4 = RSU4(128,32,256)
|
418 |
-
self.pool45 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
419 |
-
|
420 |
-
self.stage5 = RSU4F(256,64,512)
|
421 |
-
self.pool56 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
422 |
-
|
423 |
-
self.stage6 = RSU4F(512,64,512)
|
424 |
-
|
425 |
-
|
426 |
-
self.side1 = nn.Conv2d(64,out_ch,3,padding=1)
|
427 |
-
self.side2 = nn.Conv2d(64,out_ch,3,padding=1)
|
428 |
-
self.side3 = nn.Conv2d(128,out_ch,3,padding=1)
|
429 |
-
self.side4 = nn.Conv2d(256,out_ch,3,padding=1)
|
430 |
-
self.side5 = nn.Conv2d(512,out_ch,3,padding=1)
|
431 |
-
self.side6 = nn.Conv2d(512,out_ch,3,padding=1)
|
432 |
-
|
433 |
-
def compute_loss(self, preds, targets):
|
434 |
-
|
435 |
-
return muti_loss_fusion(preds,targets)
|
436 |
-
|
437 |
-
def forward(self,x):
|
438 |
-
|
439 |
-
hx = x
|
440 |
-
|
441 |
-
hxin = self.conv_in(hx)
|
442 |
-
# hx = self.pool_in(hxin)
|
443 |
-
|
444 |
-
#stage 1
|
445 |
-
hx1 = self.stage1(hxin)
|
446 |
-
hx = self.pool12(hx1)
|
447 |
-
|
448 |
-
#stage 2
|
449 |
-
hx2 = self.stage2(hx)
|
450 |
-
hx = self.pool23(hx2)
|
451 |
-
|
452 |
-
#stage 3
|
453 |
-
hx3 = self.stage3(hx)
|
454 |
-
hx = self.pool34(hx3)
|
455 |
-
|
456 |
-
#stage 4
|
457 |
-
hx4 = self.stage4(hx)
|
458 |
-
hx = self.pool45(hx4)
|
459 |
-
|
460 |
-
#stage 5
|
461 |
-
hx5 = self.stage5(hx)
|
462 |
-
hx = self.pool56(hx5)
|
463 |
-
|
464 |
-
#stage 6
|
465 |
-
hx6 = self.stage6(hx)
|
466 |
-
|
467 |
-
|
468 |
-
#side output
|
469 |
-
d1 = self.side1(hx1)
|
470 |
-
d1 = _upsample_like(d1,x)
|
471 |
-
|
472 |
-
d2 = self.side2(hx2)
|
473 |
-
d2 = _upsample_like(d2,x)
|
474 |
-
|
475 |
-
d3 = self.side3(hx3)
|
476 |
-
d3 = _upsample_like(d3,x)
|
477 |
-
|
478 |
-
d4 = self.side4(hx4)
|
479 |
-
d4 = _upsample_like(d4,x)
|
480 |
-
|
481 |
-
d5 = self.side5(hx5)
|
482 |
-
d5 = _upsample_like(d5,x)
|
483 |
-
|
484 |
-
d6 = self.side6(hx6)
|
485 |
-
d6 = _upsample_like(d6,x)
|
486 |
-
|
487 |
-
# d0 = self.outconv(torch.cat((d1,d2,d3,d4,d5,d6),1))
|
488 |
-
|
489 |
-
return [F.sigmoid(d1), F.sigmoid(d2), F.sigmoid(d3), F.sigmoid(d4), F.sigmoid(d5), F.sigmoid(d6)], [hx1,hx2,hx3,hx4,hx5,hx6]
|
490 |
-
|
491 |
-
class ISNetDIS(nn.Module):
|
492 |
-
|
493 |
-
def __init__(self,in_ch=3,out_ch=1):
|
494 |
-
super(ISNetDIS,self).__init__()
|
495 |
-
|
496 |
-
self.conv_in = nn.Conv2d(in_ch,64,3,stride=2,padding=1)
|
497 |
-
self.pool_in = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
498 |
-
|
499 |
-
self.stage1 = RSU7(64,32,64)
|
500 |
-
self.pool12 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
501 |
-
|
502 |
-
self.stage2 = RSU6(64,32,128)
|
503 |
-
self.pool23 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
504 |
-
|
505 |
-
self.stage3 = RSU5(128,64,256)
|
506 |
-
self.pool34 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
507 |
-
|
508 |
-
self.stage4 = RSU4(256,128,512)
|
509 |
-
self.pool45 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
510 |
-
|
511 |
-
self.stage5 = RSU4F(512,256,512)
|
512 |
-
self.pool56 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
513 |
-
|
514 |
-
self.stage6 = RSU4F(512,256,512)
|
515 |
-
|
516 |
-
# decoder
|
517 |
-
self.stage5d = RSU4F(1024,256,512)
|
518 |
-
self.stage4d = RSU4(1024,128,256)
|
519 |
-
self.stage3d = RSU5(512,64,128)
|
520 |
-
self.stage2d = RSU6(256,32,64)
|
521 |
-
self.stage1d = RSU7(128,16,64)
|
522 |
-
|
523 |
-
self.side1 = nn.Conv2d(64,out_ch,3,padding=1)
|
524 |
-
self.side2 = nn.Conv2d(64,out_ch,3,padding=1)
|
525 |
-
self.side3 = nn.Conv2d(128,out_ch,3,padding=1)
|
526 |
-
self.side4 = nn.Conv2d(256,out_ch,3,padding=1)
|
527 |
-
self.side5 = nn.Conv2d(512,out_ch,3,padding=1)
|
528 |
-
self.side6 = nn.Conv2d(512,out_ch,3,padding=1)
|
529 |
-
|
530 |
-
# self.outconv = nn.Conv2d(6*out_ch,out_ch,1)
|
531 |
-
|
532 |
-
def compute_loss_kl(self, preds, targets, dfs, fs, mode='MSE'):
|
533 |
-
|
534 |
-
# return muti_loss_fusion(preds,targets)
|
535 |
-
return muti_loss_fusion_kl(preds, targets, dfs, fs, mode=mode)
|
536 |
-
|
537 |
-
def compute_loss(self, preds, targets):
|
538 |
-
|
539 |
-
# return muti_loss_fusion(preds,targets)
|
540 |
-
return muti_loss_fusion(preds, targets)
|
541 |
-
|
542 |
-
def forward(self,x):
|
543 |
-
|
544 |
-
hx = x
|
545 |
-
|
546 |
-
hxin = self.conv_in(hx)
|
547 |
-
#hx = self.pool_in(hxin)
|
548 |
-
|
549 |
-
#stage 1
|
550 |
-
hx1 = self.stage1(hxin)
|
551 |
-
hx = self.pool12(hx1)
|
552 |
-
|
553 |
-
#stage 2
|
554 |
-
hx2 = self.stage2(hx)
|
555 |
-
hx = self.pool23(hx2)
|
556 |
-
|
557 |
-
#stage 3
|
558 |
-
hx3 = self.stage3(hx)
|
559 |
-
hx = self.pool34(hx3)
|
560 |
-
|
561 |
-
#stage 4
|
562 |
-
hx4 = self.stage4(hx)
|
563 |
-
hx = self.pool45(hx4)
|
564 |
-
|
565 |
-
#stage 5
|
566 |
-
hx5 = self.stage5(hx)
|
567 |
-
hx = self.pool56(hx5)
|
568 |
-
|
569 |
-
#stage 6
|
570 |
-
hx6 = self.stage6(hx)
|
571 |
-
hx6up = _upsample_like(hx6,hx5)
|
572 |
-
|
573 |
-
#-------------------- decoder --------------------
|
574 |
-
hx5d = self.stage5d(torch.cat((hx6up,hx5),1))
|
575 |
-
hx5dup = _upsample_like(hx5d,hx4)
|
576 |
-
|
577 |
-
hx4d = self.stage4d(torch.cat((hx5dup,hx4),1))
|
578 |
-
hx4dup = _upsample_like(hx4d,hx3)
|
579 |
-
|
580 |
-
hx3d = self.stage3d(torch.cat((hx4dup,hx3),1))
|
581 |
-
hx3dup = _upsample_like(hx3d,hx2)
|
582 |
-
|
583 |
-
hx2d = self.stage2d(torch.cat((hx3dup,hx2),1))
|
584 |
-
hx2dup = _upsample_like(hx2d,hx1)
|
585 |
-
|
586 |
-
hx1d = self.stage1d(torch.cat((hx2dup,hx1),1))
|
587 |
-
|
588 |
-
|
589 |
-
#side output
|
590 |
-
d1 = self.side1(hx1d)
|
591 |
-
d1 = _upsample_like(d1,x)
|
592 |
-
|
593 |
-
d2 = self.side2(hx2d)
|
594 |
-
d2 = _upsample_like(d2,x)
|
595 |
-
|
596 |
-
d3 = self.side3(hx3d)
|
597 |
-
d3 = _upsample_like(d3,x)
|
598 |
-
|
599 |
-
d4 = self.side4(hx4d)
|
600 |
-
d4 = _upsample_like(d4,x)
|
601 |
-
|
602 |
-
d5 = self.side5(hx5d)
|
603 |
-
d5 = _upsample_like(d5,x)
|
604 |
-
|
605 |
-
d6 = self.side6(hx6)
|
606 |
-
d6 = _upsample_like(d6,x)
|
607 |
-
|
608 |
-
# d0 = self.outconv(torch.cat((d1,d2,d3,d4,d5,d6),1))
|
609 |
-
|
610 |
-
return [F.sigmoid(d1), F.sigmoid(d2), F.sigmoid(d3), F.sigmoid(d4), F.sigmoid(d5), F.sigmoid(d6)],[hx1d,hx2d,hx3d,hx4d,hx5d,hx6]
|
611 |
-
# return F.sigmoid(d1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|