Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +481 -0
- config.json +24 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +72 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,481 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: sentence-transformers/all-mpnet-base-v2
|
3 |
+
library_name: sentence-transformers
|
4 |
+
metrics:
|
5 |
+
- cosine_accuracy
|
6 |
+
- dot_accuracy
|
7 |
+
- manhattan_accuracy
|
8 |
+
- euclidean_accuracy
|
9 |
+
- max_accuracy
|
10 |
+
pipeline_tag: sentence-similarity
|
11 |
+
tags:
|
12 |
+
- sentence-transformers
|
13 |
+
- sentence-similarity
|
14 |
+
- feature-extraction
|
15 |
+
- generated_from_trainer
|
16 |
+
- dataset_size:6462
|
17 |
+
- loss:MultipleNegativesRankingLoss
|
18 |
+
widget:
|
19 |
+
- source_sentence: gain successful RDP authentication
|
20 |
+
sentences:
|
21 |
+
- Creates or Schedules a task.
|
22 |
+
- Execute processes on other systems complete with full interactivity for console
|
23 |
+
applications without having to manually install client software.
|
24 |
+
- allows users to execute commands remotely on target systems using various methods
|
25 |
+
including WMI, SMB, SSH, RDP, and PowerShell
|
26 |
+
- source_sentence: collect and stage the informaiton in AD
|
27 |
+
sentences:
|
28 |
+
- Displays the directory structure of a path or of the disk in a drive graphically.
|
29 |
+
- Get user name and group information along with the respective security identifiers
|
30 |
+
(SID) claims privileges logon identifier (logon ID) for the current user on the
|
31 |
+
local system.
|
32 |
+
- retrieve stored passwords from various software and operating systems
|
33 |
+
- source_sentence: Download files or binary for further usage
|
34 |
+
sentences:
|
35 |
+
- allows users to extract sensitive credential information from the Local Security
|
36 |
+
Authority (LSA) on Windows systems.
|
37 |
+
- Transfer data from or to a server using URLs.
|
38 |
+
- Displays and modifies entries in the Address Resolution Protocol (ARP) cache.
|
39 |
+
- source_sentence: collect and stage the informaiton in AD
|
40 |
+
sentences:
|
41 |
+
- Adds displays or modifies global groups in domains.
|
42 |
+
- Gets the local security groups.
|
43 |
+
- Displays the directory structure of a path or of the disk in a drive graphically.
|
44 |
+
- source_sentence: Modify Registry of Current User Profile
|
45 |
+
sentences:
|
46 |
+
- Stops one or more running services.
|
47 |
+
- Allows users to manage local and domain user accounts.
|
48 |
+
- Saves a copy of specified subkeys, entries, and values of the registry in a specified
|
49 |
+
file.
|
50 |
+
model-index:
|
51 |
+
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
|
52 |
+
results:
|
53 |
+
- task:
|
54 |
+
type: triplet
|
55 |
+
name: Triplet
|
56 |
+
dataset:
|
57 |
+
name: dev
|
58 |
+
type: dev
|
59 |
+
metrics:
|
60 |
+
- type: cosine_accuracy
|
61 |
+
value: 1.0
|
62 |
+
name: Cosine Accuracy
|
63 |
+
- type: dot_accuracy
|
64 |
+
value: 0.0
|
65 |
+
name: Dot Accuracy
|
66 |
+
- type: manhattan_accuracy
|
67 |
+
value: 1.0
|
68 |
+
name: Manhattan Accuracy
|
69 |
+
- type: euclidean_accuracy
|
70 |
+
value: 1.0
|
71 |
+
name: Euclidean Accuracy
|
72 |
+
- type: max_accuracy
|
73 |
+
value: 1.0
|
74 |
+
name: Max Accuracy
|
75 |
+
- task:
|
76 |
+
type: triplet
|
77 |
+
name: Triplet
|
78 |
+
dataset:
|
79 |
+
name: test
|
80 |
+
type: test
|
81 |
+
metrics:
|
82 |
+
- type: cosine_accuracy
|
83 |
+
value: 1.0
|
84 |
+
name: Cosine Accuracy
|
85 |
+
- type: dot_accuracy
|
86 |
+
value: 0.0
|
87 |
+
name: Dot Accuracy
|
88 |
+
- type: manhattan_accuracy
|
89 |
+
value: 1.0
|
90 |
+
name: Manhattan Accuracy
|
91 |
+
- type: euclidean_accuracy
|
92 |
+
value: 1.0
|
93 |
+
name: Euclidean Accuracy
|
94 |
+
- type: max_accuracy
|
95 |
+
value: 1.0
|
96 |
+
name: Max Accuracy
|
97 |
+
---
|
98 |
+
|
99 |
+
# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
|
100 |
+
|
101 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
102 |
+
|
103 |
+
## Model Details
|
104 |
+
|
105 |
+
### Model Description
|
106 |
+
- **Model Type:** Sentence Transformer
|
107 |
+
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision f1b1b820e405bb8644f5e8d9a3b98f9c9e0a3c58 -->
|
108 |
+
- **Maximum Sequence Length:** 384 tokens
|
109 |
+
- **Output Dimensionality:** 768 tokens
|
110 |
+
- **Similarity Function:** Cosine Similarity
|
111 |
+
<!-- - **Training Dataset:** Unknown -->
|
112 |
+
<!-- - **Language:** Unknown -->
|
113 |
+
<!-- - **License:** Unknown -->
|
114 |
+
|
115 |
+
### Model Sources
|
116 |
+
|
117 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
118 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
119 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
120 |
+
|
121 |
+
### Full Model Architecture
|
122 |
+
|
123 |
+
```
|
124 |
+
SentenceTransformer(
|
125 |
+
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
|
126 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
127 |
+
(2): Normalize()
|
128 |
+
)
|
129 |
+
```
|
130 |
+
|
131 |
+
## Usage
|
132 |
+
|
133 |
+
### Direct Usage (Sentence Transformers)
|
134 |
+
|
135 |
+
First install the Sentence Transformers library:
|
136 |
+
|
137 |
+
```bash
|
138 |
+
pip install -U sentence-transformers
|
139 |
+
```
|
140 |
+
|
141 |
+
Then you can load this model and run inference.
|
142 |
+
```python
|
143 |
+
from sentence_transformers import SentenceTransformer
|
144 |
+
|
145 |
+
# Download from the 🤗 Hub
|
146 |
+
model = SentenceTransformer("brilan/procedure-tool-matching_3_epochs")
|
147 |
+
# Run inference
|
148 |
+
sentences = [
|
149 |
+
'Modify Registry of Current User Profile',
|
150 |
+
'Saves a copy of specified subkeys, entries, and values of the registry in a specified file.',
|
151 |
+
'Stops one or more running services.',
|
152 |
+
]
|
153 |
+
embeddings = model.encode(sentences)
|
154 |
+
print(embeddings.shape)
|
155 |
+
# [3, 768]
|
156 |
+
|
157 |
+
# Get the similarity scores for the embeddings
|
158 |
+
similarities = model.similarity(embeddings, embeddings)
|
159 |
+
print(similarities.shape)
|
160 |
+
# [3, 3]
|
161 |
+
```
|
162 |
+
|
163 |
+
<!--
|
164 |
+
### Direct Usage (Transformers)
|
165 |
+
|
166 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
167 |
+
|
168 |
+
</details>
|
169 |
+
-->
|
170 |
+
|
171 |
+
<!--
|
172 |
+
### Downstream Usage (Sentence Transformers)
|
173 |
+
|
174 |
+
You can finetune this model on your own dataset.
|
175 |
+
|
176 |
+
<details><summary>Click to expand</summary>
|
177 |
+
|
178 |
+
</details>
|
179 |
+
-->
|
180 |
+
|
181 |
+
<!--
|
182 |
+
### Out-of-Scope Use
|
183 |
+
|
184 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
185 |
+
-->
|
186 |
+
|
187 |
+
## Evaluation
|
188 |
+
|
189 |
+
### Metrics
|
190 |
+
|
191 |
+
#### Triplet
|
192 |
+
* Dataset: `dev`
|
193 |
+
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
|
194 |
+
|
195 |
+
| Metric | Value |
|
196 |
+
|:--------------------|:--------|
|
197 |
+
| **cosine_accuracy** | **1.0** |
|
198 |
+
| dot_accuracy | 0.0 |
|
199 |
+
| manhattan_accuracy | 1.0 |
|
200 |
+
| euclidean_accuracy | 1.0 |
|
201 |
+
| max_accuracy | 1.0 |
|
202 |
+
|
203 |
+
#### Triplet
|
204 |
+
* Dataset: `test`
|
205 |
+
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
|
206 |
+
|
207 |
+
| Metric | Value |
|
208 |
+
|:--------------------|:--------|
|
209 |
+
| **cosine_accuracy** | **1.0** |
|
210 |
+
| dot_accuracy | 0.0 |
|
211 |
+
| manhattan_accuracy | 1.0 |
|
212 |
+
| euclidean_accuracy | 1.0 |
|
213 |
+
| max_accuracy | 1.0 |
|
214 |
+
|
215 |
+
<!--
|
216 |
+
## Bias, Risks and Limitations
|
217 |
+
|
218 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
219 |
+
-->
|
220 |
+
|
221 |
+
<!--
|
222 |
+
### Recommendations
|
223 |
+
|
224 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
225 |
+
-->
|
226 |
+
|
227 |
+
## Training Details
|
228 |
+
|
229 |
+
### Training Dataset
|
230 |
+
|
231 |
+
#### Unnamed Dataset
|
232 |
+
|
233 |
+
|
234 |
+
* Size: 6,462 training samples
|
235 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
236 |
+
* Approximate statistics based on the first 1000 samples:
|
237 |
+
| | anchor | positive | negative |
|
238 |
+
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
239 |
+
| type | string | string | string |
|
240 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 9.62 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 18.14 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 17.66 tokens</li><li>max: 57 tokens</li></ul> |
|
241 |
+
* Samples:
|
242 |
+
| anchor | positive | negative |
|
243 |
+
|:---------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
244 |
+
| <code>used compromised domain accounts to gain access to the target environment</code> | <code>allows users to execute commands remotely on target systems using various methods including WMI, SMB, SSH, RDP, and PowerShell</code> | <code>Displays information about user sessions on a Remote Desktop Session Host server.</code> |
|
245 |
+
| <code>use default credentials to connect to IPC$ shares on remote machines</code> | <code>Execute commands on remote targets via Remote Desktop Protocol (RDP) without requiring a graphical user interface (GUI). </code> | <code>It provides functionality to view create modify and delete user accounts directly from the command prompt.</code> |
|
246 |
+
| <code>gain access to the server via SSH</code> | <code>allow users to connect to RDP servers</code> | <code>allows administrators to manage and configure audit policies for the system and provides the ability to view, set, and modify the audit policies that control what events are logged by the Windows security auditing subsystem.</code> |
|
247 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
248 |
+
```json
|
249 |
+
{
|
250 |
+
"scale": 20.0,
|
251 |
+
"similarity_fct": "cos_sim"
|
252 |
+
}
|
253 |
+
```
|
254 |
+
|
255 |
+
### Evaluation Dataset
|
256 |
+
|
257 |
+
#### Unnamed Dataset
|
258 |
+
|
259 |
+
|
260 |
+
* Size: 2,770 evaluation samples
|
261 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
262 |
+
* Approximate statistics based on the first 1000 samples:
|
263 |
+
| | anchor | positive | negative |
|
264 |
+
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
265 |
+
| type | string | string | string |
|
266 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 9.48 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 18.31 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 18.21 tokens</li><li>max: 57 tokens</li></ul> |
|
267 |
+
* Samples:
|
268 |
+
| anchor | positive | negative |
|
269 |
+
|:-------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------|
|
270 |
+
| <code>Disable Windows Services related to security products</code> | <code>stop running service</code> | <code>Creates lists and deletes stored user names and passwords or credentials.</code> |
|
271 |
+
| <code>Get user information</code> | <code>Gets the local security groups.</code> | <code>Copy files from source to dest between local and remote machine skipping identical files. </code> |
|
272 |
+
| <code>used pass the hash for lateral movement</code> | <code>Execute processes on other systems complete with full interactivity for console applications without having to manually install client software.</code> | <code>Extracts passwords keys,pin,codes,tickets from the memory of lsass</code> |
|
273 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
274 |
+
```json
|
275 |
+
{
|
276 |
+
"scale": 20.0,
|
277 |
+
"similarity_fct": "cos_sim"
|
278 |
+
}
|
279 |
+
```
|
280 |
+
|
281 |
+
### Training Hyperparameters
|
282 |
+
#### Non-Default Hyperparameters
|
283 |
+
|
284 |
+
- `eval_strategy`: steps
|
285 |
+
- `per_device_train_batch_size`: 16
|
286 |
+
- `per_device_eval_batch_size`: 16
|
287 |
+
- `warmup_ratio`: 0.1
|
288 |
+
- `fp16`: True
|
289 |
+
- `batch_sampler`: no_duplicates
|
290 |
+
|
291 |
+
#### All Hyperparameters
|
292 |
+
<details><summary>Click to expand</summary>
|
293 |
+
|
294 |
+
- `overwrite_output_dir`: False
|
295 |
+
- `do_predict`: False
|
296 |
+
- `eval_strategy`: steps
|
297 |
+
- `prediction_loss_only`: True
|
298 |
+
- `per_device_train_batch_size`: 16
|
299 |
+
- `per_device_eval_batch_size`: 16
|
300 |
+
- `per_gpu_train_batch_size`: None
|
301 |
+
- `per_gpu_eval_batch_size`: None
|
302 |
+
- `gradient_accumulation_steps`: 1
|
303 |
+
- `eval_accumulation_steps`: None
|
304 |
+
- `torch_empty_cache_steps`: None
|
305 |
+
- `learning_rate`: 5e-05
|
306 |
+
- `weight_decay`: 0.0
|
307 |
+
- `adam_beta1`: 0.9
|
308 |
+
- `adam_beta2`: 0.999
|
309 |
+
- `adam_epsilon`: 1e-08
|
310 |
+
- `max_grad_norm`: 1.0
|
311 |
+
- `num_train_epochs`: 3
|
312 |
+
- `max_steps`: -1
|
313 |
+
- `lr_scheduler_type`: linear
|
314 |
+
- `lr_scheduler_kwargs`: {}
|
315 |
+
- `warmup_ratio`: 0.1
|
316 |
+
- `warmup_steps`: 0
|
317 |
+
- `log_level`: passive
|
318 |
+
- `log_level_replica`: warning
|
319 |
+
- `log_on_each_node`: True
|
320 |
+
- `logging_nan_inf_filter`: True
|
321 |
+
- `save_safetensors`: True
|
322 |
+
- `save_on_each_node`: False
|
323 |
+
- `save_only_model`: False
|
324 |
+
- `restore_callback_states_from_checkpoint`: False
|
325 |
+
- `no_cuda`: False
|
326 |
+
- `use_cpu`: False
|
327 |
+
- `use_mps_device`: False
|
328 |
+
- `seed`: 42
|
329 |
+
- `data_seed`: None
|
330 |
+
- `jit_mode_eval`: False
|
331 |
+
- `use_ipex`: False
|
332 |
+
- `bf16`: False
|
333 |
+
- `fp16`: True
|
334 |
+
- `fp16_opt_level`: O1
|
335 |
+
- `half_precision_backend`: auto
|
336 |
+
- `bf16_full_eval`: False
|
337 |
+
- `fp16_full_eval`: False
|
338 |
+
- `tf32`: None
|
339 |
+
- `local_rank`: 0
|
340 |
+
- `ddp_backend`: None
|
341 |
+
- `tpu_num_cores`: None
|
342 |
+
- `tpu_metrics_debug`: False
|
343 |
+
- `debug`: []
|
344 |
+
- `dataloader_drop_last`: False
|
345 |
+
- `dataloader_num_workers`: 0
|
346 |
+
- `dataloader_prefetch_factor`: None
|
347 |
+
- `past_index`: -1
|
348 |
+
- `disable_tqdm`: False
|
349 |
+
- `remove_unused_columns`: True
|
350 |
+
- `label_names`: None
|
351 |
+
- `load_best_model_at_end`: False
|
352 |
+
- `ignore_data_skip`: False
|
353 |
+
- `fsdp`: []
|
354 |
+
- `fsdp_min_num_params`: 0
|
355 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
356 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
357 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
358 |
+
- `deepspeed`: None
|
359 |
+
- `label_smoothing_factor`: 0.0
|
360 |
+
- `optim`: adamw_torch
|
361 |
+
- `optim_args`: None
|
362 |
+
- `adafactor`: False
|
363 |
+
- `group_by_length`: False
|
364 |
+
- `length_column_name`: length
|
365 |
+
- `ddp_find_unused_parameters`: None
|
366 |
+
- `ddp_bucket_cap_mb`: None
|
367 |
+
- `ddp_broadcast_buffers`: False
|
368 |
+
- `dataloader_pin_memory`: True
|
369 |
+
- `dataloader_persistent_workers`: False
|
370 |
+
- `skip_memory_metrics`: True
|
371 |
+
- `use_legacy_prediction_loop`: False
|
372 |
+
- `push_to_hub`: False
|
373 |
+
- `resume_from_checkpoint`: None
|
374 |
+
- `hub_model_id`: None
|
375 |
+
- `hub_strategy`: every_save
|
376 |
+
- `hub_private_repo`: False
|
377 |
+
- `hub_always_push`: False
|
378 |
+
- `gradient_checkpointing`: False
|
379 |
+
- `gradient_checkpointing_kwargs`: None
|
380 |
+
- `include_inputs_for_metrics`: False
|
381 |
+
- `eval_do_concat_batches`: True
|
382 |
+
- `fp16_backend`: auto
|
383 |
+
- `push_to_hub_model_id`: None
|
384 |
+
- `push_to_hub_organization`: None
|
385 |
+
- `mp_parameters`:
|
386 |
+
- `auto_find_batch_size`: False
|
387 |
+
- `full_determinism`: False
|
388 |
+
- `torchdynamo`: None
|
389 |
+
- `ray_scope`: last
|
390 |
+
- `ddp_timeout`: 1800
|
391 |
+
- `torch_compile`: False
|
392 |
+
- `torch_compile_backend`: None
|
393 |
+
- `torch_compile_mode`: None
|
394 |
+
- `dispatch_batches`: None
|
395 |
+
- `split_batches`: None
|
396 |
+
- `include_tokens_per_second`: False
|
397 |
+
- `include_num_input_tokens_seen`: False
|
398 |
+
- `neftune_noise_alpha`: None
|
399 |
+
- `optim_target_modules`: None
|
400 |
+
- `batch_eval_metrics`: False
|
401 |
+
- `eval_on_start`: False
|
402 |
+
- `eval_use_gather_object`: False
|
403 |
+
- `batch_sampler`: no_duplicates
|
404 |
+
- `multi_dataset_batch_sampler`: proportional
|
405 |
+
|
406 |
+
</details>
|
407 |
+
|
408 |
+
### Training Logs
|
409 |
+
| Epoch | Step | Training Loss | loss | dev_cosine_accuracy | test_cosine_accuracy |
|
410 |
+
|:------:|:----:|:-------------:|:------:|:-------------------:|:--------------------:|
|
411 |
+
| 0 | 0 | - | - | 0.8596 | - |
|
412 |
+
| 0.2475 | 100 | 2.0428 | 1.3753 | 0.9989 | - |
|
413 |
+
| 0.4950 | 200 | 1.5299 | 1.2361 | 1.0 | - |
|
414 |
+
| 0.7426 | 300 | 1.4871 | 1.1853 | 1.0 | - |
|
415 |
+
| 0.9901 | 400 | 1.4612 | 1.1707 | 1.0 | - |
|
416 |
+
| 1.2376 | 500 | 0.0287 | 1.2190 | 1.0 | - |
|
417 |
+
| 1.1584 | 600 | 0.9192 | 1.1738 | 1.0 | - |
|
418 |
+
| 1.4059 | 700 | 1.4131 | 1.1708 | 1.0 | - |
|
419 |
+
| 1.6535 | 800 | 1.4254 | 1.1428 | 1.0 | - |
|
420 |
+
| 1.9010 | 900 | 1.3977 | 1.1373 | 1.0 | - |
|
421 |
+
| 2.1485 | 1000 | 0.5379 | 1.1419 | 1.0 | - |
|
422 |
+
| 2.0693 | 1100 | 0.386 | 1.1306 | 1.0 | - |
|
423 |
+
| 2.3168 | 1200 | 1.3708 | 1.1260 | 1.0 | - |
|
424 |
+
| 2.3465 | 1212 | - | - | - | 1.0 |
|
425 |
+
|
426 |
+
|
427 |
+
### Framework Versions
|
428 |
+
- Python: 3.11.5
|
429 |
+
- Sentence Transformers: 3.1.0
|
430 |
+
- Transformers: 4.44.2
|
431 |
+
- PyTorch: 2.4.1+cu121
|
432 |
+
- Accelerate: 1.0.0
|
433 |
+
- Datasets: 3.0.1
|
434 |
+
- Tokenizers: 0.19.1
|
435 |
+
|
436 |
+
## Citation
|
437 |
+
|
438 |
+
### BibTeX
|
439 |
+
|
440 |
+
#### Sentence Transformers
|
441 |
+
```bibtex
|
442 |
+
@inproceedings{reimers-2019-sentence-bert,
|
443 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
444 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
445 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
446 |
+
month = "11",
|
447 |
+
year = "2019",
|
448 |
+
publisher = "Association for Computational Linguistics",
|
449 |
+
url = "https://arxiv.org/abs/1908.10084",
|
450 |
+
}
|
451 |
+
```
|
452 |
+
|
453 |
+
#### MultipleNegativesRankingLoss
|
454 |
+
```bibtex
|
455 |
+
@misc{henderson2017efficient,
|
456 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
457 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
458 |
+
year={2017},
|
459 |
+
eprint={1705.00652},
|
460 |
+
archivePrefix={arXiv},
|
461 |
+
primaryClass={cs.CL}
|
462 |
+
}
|
463 |
+
```
|
464 |
+
|
465 |
+
<!--
|
466 |
+
## Glossary
|
467 |
+
|
468 |
+
*Clearly define terms in order to be accessible across audiences.*
|
469 |
+
-->
|
470 |
+
|
471 |
+
<!--
|
472 |
+
## Model Card Authors
|
473 |
+
|
474 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
475 |
+
-->
|
476 |
+
|
477 |
+
<!--
|
478 |
+
## Model Card Contact
|
479 |
+
|
480 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
481 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sentence-transformers/all-mpnet-base-v2",
|
3 |
+
"architectures": [
|
4 |
+
"MPNetModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 514,
|
16 |
+
"model_type": "mpnet",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"relative_attention_num_buckets": 32,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.44.2",
|
23 |
+
"vocab_size": 30527
|
24 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.1.0",
|
4 |
+
"transformers": "4.44.2",
|
5 |
+
"pytorch": "2.4.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:371118df31c9b02e38a927b68d37f95379d46ce916947a41304b7b8f7d757a9b
|
3 |
+
size 437967672
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 384,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"104": {
|
36 |
+
"content": "[UNK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"30526": {
|
44 |
+
"content": "<mask>",
|
45 |
+
"lstrip": true,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
}
|
51 |
+
},
|
52 |
+
"bos_token": "<s>",
|
53 |
+
"clean_up_tokenization_spaces": true,
|
54 |
+
"cls_token": "<s>",
|
55 |
+
"do_lower_case": true,
|
56 |
+
"eos_token": "</s>",
|
57 |
+
"mask_token": "<mask>",
|
58 |
+
"max_length": 128,
|
59 |
+
"model_max_length": 384,
|
60 |
+
"pad_to_multiple_of": null,
|
61 |
+
"pad_token": "<pad>",
|
62 |
+
"pad_token_type_id": 0,
|
63 |
+
"padding_side": "right",
|
64 |
+
"sep_token": "</s>",
|
65 |
+
"stride": 0,
|
66 |
+
"strip_accents": null,
|
67 |
+
"tokenize_chinese_chars": true,
|
68 |
+
"tokenizer_class": "MPNetTokenizer",
|
69 |
+
"truncation_side": "right",
|
70 |
+
"truncation_strategy": "longest_first",
|
71 |
+
"unk_token": "[UNK]"
|
72 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|