---
base_model: sentence-transformers/all-mpnet-base-v2
library_name: sentence-transformers
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6462
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: gain successful RDP authentication
sentences:
- Creates or Schedules a task.
- Execute processes on other systems complete with full interactivity for console
applications without having to manually install client software.
- allows users to execute commands remotely on target systems using various methods
including WMI, SMB, SSH, RDP, and PowerShell
- source_sentence: collect and stage the informaiton in AD
sentences:
- Displays the directory structure of a path or of the disk in a drive graphically.
- Get user name and group information along with the respective security identifiers
(SID) claims privileges logon identifier (logon ID) for the current user on the
local system.
- retrieve stored passwords from various software and operating systems
- source_sentence: Download files or binary for further usage
sentences:
- allows users to extract sensitive credential information from the Local Security
Authority (LSA) on Windows systems.
- Transfer data from or to a server using URLs.
- Displays and modifies entries in the Address Resolution Protocol (ARP) cache.
- source_sentence: collect and stage the informaiton in AD
sentences:
- Adds displays or modifies global groups in domains.
- Gets the local security groups.
- Displays the directory structure of a path or of the disk in a drive graphically.
- source_sentence: Modify Registry of Current User Profile
sentences:
- Stops one or more running services.
- Allows users to manage local and domain user accounts.
- Saves a copy of specified subkeys, entries, and values of the registry in a specified
file.
model-index:
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
results:
- task:
type: triplet
name: Triplet
dataset:
name: dev
type: dev
metrics:
- type: cosine_accuracy
value: 1.0
name: Cosine Accuracy
- type: dot_accuracy
value: 0.0
name: Dot Accuracy
- type: manhattan_accuracy
value: 1.0
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 1.0
name: Euclidean Accuracy
- type: max_accuracy
value: 1.0
name: Max Accuracy
- task:
type: triplet
name: Triplet
dataset:
name: test
type: test
metrics:
- type: cosine_accuracy
value: 1.0
name: Cosine Accuracy
- type: dot_accuracy
value: 0.0
name: Dot Accuracy
- type: manhattan_accuracy
value: 1.0
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 1.0
name: Euclidean Accuracy
- type: max_accuracy
value: 1.0
name: Max Accuracy
---
# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
- **Maximum Sequence Length:** 384 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("brilan/procedure-tool-matching_3_epochs")
# Run inference
sentences = [
'Modify Registry of Current User Profile',
'Saves a copy of specified subkeys, entries, and values of the registry in a specified file.',
'Stops one or more running services.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Triplet
* Dataset: `dev`
* Evaluated with [TripletEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:--------------------|:--------|
| **cosine_accuracy** | **1.0** |
| dot_accuracy | 0.0 |
| manhattan_accuracy | 1.0 |
| euclidean_accuracy | 1.0 |
| max_accuracy | 1.0 |
#### Triplet
* Dataset: `test`
* Evaluated with [TripletEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:--------------------|:--------|
| **cosine_accuracy** | **1.0** |
| dot_accuracy | 0.0 |
| manhattan_accuracy | 1.0 |
| euclidean_accuracy | 1.0 |
| max_accuracy | 1.0 |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 6,462 training samples
* Columns: anchor
, positive
, and negative
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details |
used compromised domain accounts to gain access to the target environment
| allows users to execute commands remotely on target systems using various methods including WMI, SMB, SSH, RDP, and PowerShell
| Displays information about user sessions on a Remote Desktop Session Host server.
|
| use default credentials to connect to IPC$ shares on remote machines
| Execute commands on remote targets via Remote Desktop Protocol (RDP) without requiring a graphical user interface (GUI).
| It provides functionality to view create modify and delete user accounts directly from the command prompt.
|
| gain access to the server via SSH
| allow users to connect to RDP servers
| allows administrators to manage and configure audit policies for the system and provides the ability to view, set, and modify the audit policies that control what events are logged by the Windows security auditing subsystem.
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 2,770 evaluation samples
* Columns: anchor
, positive
, and negative
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | Disable Windows Services related to security products
| stop running service
| Creates lists and deletes stored user names and passwords or credentials.
|
| Get user information
| Gets the local security groups.
| Copy files from source to dest between local and remote machine skipping identical files.
|
| used pass the hash for lateral movement
| Execute processes on other systems complete with full interactivity for console applications without having to manually install client software.
| Extracts passwords keys,pin,codes,tickets from the memory of lsass
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters