--- library_name: peft license: mit base_model: numind/NuExtract-v1.5 tags: - axolotl - generated_from_trainer model-index: - name: e2dca2f4-686c-4951-85d8-9eaa25e7c7f4 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: numind/NuExtract-v1.5 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e7031e972306f161_train_data.json ds_type: json format: custom path: /workspace/input_data/e7031e972306f161_train_data.json type: field_instruction: inputs field_output: targets format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: brixeus/e2dca2f4-686c-4951-85d8-9eaa25e7c7f4 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/e7031e972306f161_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 74aeda5e-e0f5-4ba1-aafa-46b426ae9a0b wandb_project: Gradients-On-Three wandb_run: your_name wandb_runid: 74aeda5e-e0f5-4ba1-aafa-46b426ae9a0b warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ```

# e2dca2f4-686c-4951-85d8-9eaa25e7c7f4 This model is a fine-tuned version of [numind/NuExtract-v1.5](https://huggingface.co/numind/NuExtract-v1.5) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1074 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0058 | 1 | 1.6373 | | 6.5117 | 0.0520 | 9 | 1.5940 | | 5.6145 | 0.1040 | 18 | 1.4199 | | 5.1259 | 0.1561 | 27 | 1.3104 | | 4.6888 | 0.2081 | 36 | 1.2404 | | 4.609 | 0.2601 | 45 | 1.1902 | | 4.6249 | 0.3121 | 54 | 1.1553 | | 4.4169 | 0.3642 | 63 | 1.1320 | | 4.6411 | 0.4162 | 72 | 1.1186 | | 4.4663 | 0.4682 | 81 | 1.1105 | | 4.6312 | 0.5202 | 90 | 1.1077 | | 4.1999 | 0.5723 | 99 | 1.1074 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1