File size: 2,663 Bytes
2b543fb
 
 
c701d83
 
 
 
 
3f4b8be
 
2b543fb
55b56f5
c701d83
4c7deff
c701d83
 
 
 
 
 
 
472adf6
c701d83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1878de7
c701d83
d57afc9
 
5059e19
45ae8a7
c701d83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7efa174
c701d83
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
license: other
license_name: yi-license
license_link: https://huggingface.co/01-ai/Yi-34B/blob/main/LICENSE
language:
- en
library_name: transformers
pipeline_tag: text-generation
tags:
- merge
---
# This is not a great model, succeeded by a new merge: **https://huggingface.co/brucethemoose/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties**

**NousResearch/Nous-Capybara-34B**, **migtissera/Tess-M-v1.2** and **migtissera/Tess-M-v1.3** merged with a new, experimental implementation of "dare ties" via mergekit. See:

> Language Models are Super Mario: Absorbing Abilities from Homologous Models as a Free Lunch

https://github.com/yule-BUAA/MergeLM

https://github.com/cg123/mergekit/tree/dare-tokenizer

Highly experimental and still being tested! But this should yield a better merge than a typical linear/slerp merge or even a ties merge.
***

Merged with the following config, and the tokenizer from Yi Llamafied:
```
models:
  - model: /home/alpha/Storage/Models/Raw/larryvrh_Yi-34B-200K-Llamafied
    # no parameters necessary for base model
  - model: /home/alpha/Storage/Models/Raw/migtissera_Tess-M-v1.3
    parameters:
      weight: 0.50
      density: 0.56
  - model: /home/alpha/Storage/Models/Raw/migtissera_Tess-M-v1.2
    parameters:
      weight: 0.20
      density: 0.50
  - model: /home/alpha/Storage/Models/Raw/Nous-Capybara-34B
    parameters:
      weight: 0.50
      density: 0.56
merge_method: dare_ties
base_model: /home/alpha/Storage/Models/Raw/larryvrh_Yi-34B-200K-Llamafied
parameters:
  int8_mask: true
dtype: bfloat16
```

Tess 1.2 (at a low weight) and 1.3 were used because, according to the trainer, they were trained on different datasets: https://migel.substack.com/p/learnings-from-training-tess

As the Tess creator warned about, if the model repeats at high context like Tess 1.2, let me know!

I chose not to include other finetunes, such as Dolphin, because they aren't trained on the 200K base. If any other 200K finetunes pop up, let me know.

***

## Prompt template: Orca-Vicuna

```
SYSTEM: {system_message}
USER: {prompt}
ASSISTANT:

```
Being a Yi model, try disabling the BOS token and/or running a lower temperature with MinP if output doesn't seem right.

Sometimes the model "spells out" the stop token as `</s>` like Capybara, so you may need to add `</s>` as an additional stopping condition. 

***

Credits:

https://github.com/cg123/mergekit/tree/dare-tokenizer

https://huggingface.co/NousResearch/Nous-Capybara-34B/

https://huggingface.co/migtissera/Tess-M-v1.2

https://huggingface.co/migtissera/Tess-M-v1.3

https://huggingface.co/larryvrh/Yi-34B-200K-Llamafied

https://huggingface.co/01-ai/Yi-34B-200K