anti_spoofing / anti_spoofing.py
brxerq's picture
Update anti_spoofing.py
26504b5 verified
raw
history blame
8.87 kB
import cv2
import dlib
import numpy as np
import os
import time
import mediapipe as mp
from skimage import feature
class AntiSpoofingSystem:
def __init__(self):
self.detector = dlib.get_frontal_face_detector()
self.anti_spoofing_completed = False
self.blink_count = 0
self.image_captured = False
self.captured_image = None
self.predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
self.mp_hands = mp.solutions.hands
self.hands = self.mp_hands.Hands(static_image_mode=False, max_num_hands=1, min_detection_confidence=0.7)
self.cap = cv2.VideoCapture(0)
self.cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1280)
self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 720)
self.save_directory = "Person"
if not os.path.exists(self.save_directory):
os.makedirs(self.save_directory)
self.net_smartphone = cv2.dnn.readNet('yolov4.weights', 'Pretrained_yolov4 (1).cfg')
with open('PreTrained_coco.names', 'r') as f:
self.classes_smartphone = f.read().strip().split('\n')
self.EAR_THRESHOLD = 0.25
self.BLINK_CONSEC_FRAMES = 4
self.left_eye_state = False
self.right_eye_state = False
self.left_blink_counter = 0
self.right_blink_counter = 0
self.smartphone_detected = False
self.smartphone_detection_frame_interval = 30
self.frame_count = 0
# New attributes for student data
self.student_id = None
self.student_name = None
def calculate_ear(self, eye):
A = np.linalg.norm(eye[1] - eye[5])
B = np.linalg.norm(eye[2] - eye[4])
C = np.linalg.norm(eye[0] - eye[3])
return (A + B) / (2.0 * C)
def analyze_texture(self, face_region):
gray_face = cv2.cvtColor(face_region, cv2.COLOR_BGR2GRAY)
lbp = feature.local_binary_pattern(gray_face, P=8, R=1, method="uniform")
lbp_hist, _ = np.histogram(lbp.ravel(), bins=np.arange(0, 58), range=(0, 58))
lbp_hist = lbp_hist.astype("float")
lbp_hist /= (lbp_hist.sum() + 1e-5)
return np.sum(lbp_hist[:10]) > 0.3
def detect_hand_gesture(self, frame):
results = self.hands.process(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
return results.multi_hand_landmarks is not None
def detect_smartphone(self, frame):
if self.frame_count % self.smartphone_detection_frame_interval == 0:
blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (416, 416), swapRB=True, crop=False)
self.net_smartphone.setInput(blob)
output_layers_names = self.net_smartphone.getUnconnectedOutLayersNames()
detections = self.net_smartphone.forward(output_layers_names)
for detection in detections:
for obj in detection:
scores = obj[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5 and self.classes_smartphone[class_id] == 'cell phone':
center_x = int(obj[0] * frame.shape[1])
center_y = int(obj[1] * frame.shape[0])
width = int(obj[2] * frame.shape[1])
height = int(obj[3] * frame.shape[0])
left = int(center_x - width / 2)
top = int(center_y - height / 2)
cv2.rectangle(frame, (left, top), (left + width, top + height), (0, 0, 255), 2)
cv2.putText(frame, 'Smartphone Detected', (left, top - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
self.smartphone_detected = True
self.left_blink_counter = 0
self.right_blink_counter = 0
return
self.frame_count += 1
self.smartphone_detected = False
def access_verified_image(self):
ret, frame = self.cap.read()
if not ret:
return None
# Perform anti-spoofing checks
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = self.detector(gray)
# Check if a face is detected
if len(faces) == 0:
return None
# Assume the first detected face is the subject
face = faces[0]
landmarks = self.predictor(gray, face)
# Check for blink detection (assuming you have this method correctly implemented)
leftEye = np.array([(landmarks.part(n).x, landmarks.part(n).y) for n in range(36, 42)])
rightEye = np.array([(landmarks.part(n).x, landmarks.part(n).y) for n in range(42, 48)])
ear_left = self.calculate_ear(leftEye)
ear_right = self.calculate_ear(rightEye)
if not self.detect_blink(ear_left, ear_right):
return None
# Check for hand gesture (assuming you have this method correctly implemented)
if not self.detect_hand_gesture(frame):
return None
# Check if a smartphone is detected
self.detect_smartphone(frame)
if self.smartphone_detected:
return None
# Check texture for liveness (assuming you have this method correctly implemented)
(x, y, w, h) = (face.left(), face.top(), face.width(), face.height())
expanded_region = frame[max(y - h // 2, 0):min(y + 3 * h // 2, frame.shape[0]),
max(x - w // 2, 0):min(x + 3 * w // 2, frame.shape[1])]
if not self.analyze_texture(expanded_region):
return None
return frame
def detect_blink(self, left_ear, right_ear):
if self.smartphone_detected:
self.left_eye_state = False
self.right_eye_state = False
self.left_blink_counter = 0
self.right_blink_counter = 0
return False
if left_ear < self.EAR_THRESHOLD:
if not self.left_eye_state:
self.left_eye_state = True
else:
if self.left_eye_state:
self.left_eye_state = False
self.left_blink_counter += 1
if right_ear < self.EAR_THRESHOLD:
if not self.right_eye_state:
self.right_eye_state = True
else:
if self.right_eye_state:
self.right_eye_state = False
self.right_blink_counter += 1
if self.left_blink_counter > 0 and self.right_blink_counter > 0:
self.left_blink_counter = 0
self.right_blink_counter = 0
return True
else:
return False
def run(self):
ret, frame = self.cap.read()
if not ret:
return None
# Detect smartphone in the frame
self.detect_smartphone(frame)
if self.smartphone_detected:
cv2.putText(frame, "Mobile phone detected, can't record attendance", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
else:
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = self.detector(gray)
for face in faces:
landmarks = self.predictor(gray, face)
leftEye = np.array([(landmarks.part(n).x, landmarks.part(n).y) for n in range(36, 42)])
rightEye = np.array([(landmarks.part(n).x, landmarks.part(n).y) for n in range(42, 48)])
ear_left = self.calculate_ear(leftEye)
ear_right = self.calculate_ear(rightEye)
if self.detect_blink(ear_left, ear_right):
self.blink_count += 1
cv2.putText(frame, f"Blink Count: {self.blink_count}", (10, 70), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
# Check if conditions for image capture are met
if self.blink_count >= 5 and not self.image_captured:
# Capture the image and reset blink count
self.save_image(frame)
self.blink_count = 0
self.image_captured = True
return frame
def save_image(self, frame):
# Implement logic to save the frame as an image
timestamp = int(time.time())
image_name = f"captured_{timestamp}.png"
cv2.imwrite(os.path.join(self.save_directory, image_name), frame)
self.captured_image = frame
print(f"Image captured and saved as {image_name}")
def get_captured_image(self):
# Return the captured image with preprocessing applied (if necessary)
captured_frame = self.captured_image
if captured_frame is not None:
return captured_frame
return None
if __name__ == "__main__":
anti_spoofing_system = AntiSpoofingSystem()
anti_spoofing_system.run()