brxerq commited on
Commit
0e2accf
·
verified ·
1 Parent(s): 6c4faaf

Upload anti_spoofing.py

Browse files
Files changed (1) hide show
  1. anti_spoofing.py +224 -0
anti_spoofing.py ADDED
@@ -0,0 +1,224 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import dlib
3
+ import numpy as np
4
+ import os
5
+ import time
6
+ import mediapipe as mp
7
+ from skimage import feature
8
+
9
+ class AntiSpoofingSystem:
10
+ def __init__(self):
11
+ self.detector = dlib.get_frontal_face_detector()
12
+ self.anti_spoofing_completed = False
13
+ self.blink_count = 0
14
+ self.image_captured = False
15
+ self.captured_image = None
16
+ self.predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
17
+
18
+ self.mp_hands = mp.solutions.hands
19
+ self.hands = self.mp_hands.Hands(static_image_mode=False, max_num_hands=1, min_detection_confidence=0.7)
20
+
21
+ self.cap = cv2.VideoCapture(0)
22
+ self.cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1280)
23
+ self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 720)
24
+
25
+ self.save_directory = "Person"
26
+ if not os.path.exists(self.save_directory):
27
+ os.makedirs(self.save_directory)
28
+
29
+ self.net_smartphone = cv2.dnn.readNet('yolov4.weights', 'Pretrained_yolov4 (1).cfg')
30
+ with open('PreTrained_coco.names', 'r') as f:
31
+ self.classes_smartphone = f.read().strip().split('\n')
32
+
33
+ self.EAR_THRESHOLD = 0.25
34
+ self.BLINK_CONSEC_FRAMES = 4
35
+
36
+ self.left_eye_state = False
37
+ self.right_eye_state = False
38
+ self.left_blink_counter = 0
39
+ self.right_blink_counter = 0
40
+
41
+ self.smartphone_detected = False
42
+ self.smartphone_detection_frame_interval = 30
43
+ self.frame_count = 0
44
+
45
+ # New attributes for student data
46
+ self.student_id = None
47
+ self.student_name = None
48
+
49
+ def calculate_ear(self, eye):
50
+ A = np.linalg.norm(eye[1] - eye[5])
51
+ B = np.linalg.norm(eye[2] - eye[4])
52
+ C = np.linalg.norm(eye[0] - eye[3])
53
+ return (A + B) / (2.0 * C)
54
+
55
+ def analyze_texture(self, face_region):
56
+ gray_face = cv2.cvtColor(face_region, cv2.COLOR_BGR2GRAY)
57
+ lbp = feature.local_binary_pattern(gray_face, P=8, R=1, method="uniform")
58
+ lbp_hist, _ = np.histogram(lbp.ravel(), bins=np.arange(0, 58), range=(0, 58))
59
+ lbp_hist = lbp_hist.astype("float")
60
+ lbp_hist /= (lbp_hist.sum() + 1e-5)
61
+ return np.sum(lbp_hist[:10]) > 0.3
62
+
63
+ def detect_hand_gesture(self, frame):
64
+ results = self.hands.process(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
65
+ return results.multi_hand_landmarks is not None
66
+
67
+ def detect_smartphone(self, frame):
68
+ if self.frame_count % self.smartphone_detection_frame_interval == 0:
69
+ blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (416, 416), swapRB=True, crop=False)
70
+ self.net_smartphone.setInput(blob)
71
+ output_layers_names = self.net_smartphone.getUnconnectedOutLayersNames()
72
+ detections = self.net_smartphone.forward(output_layers_names)
73
+
74
+ for detection in detections:
75
+ for obj in detection:
76
+ scores = obj[5:]
77
+ class_id = np.argmax(scores)
78
+ confidence = scores[class_id]
79
+ if confidence > 0.5 and self.classes_smartphone[class_id] == 'cell phone':
80
+ center_x = int(obj[0] * frame.shape[1])
81
+ center_y = int(obj[1] * frame.shape[0])
82
+ width = int(obj[2] * frame.shape[1])
83
+ height = int(obj[3] * frame.shape[0])
84
+ left = int(center_x - width / 2)
85
+ top = int(center_y - height / 2)
86
+
87
+ cv2.rectangle(frame, (left, top), (left + width, top + height), (0, 0, 255), 2)
88
+ cv2.putText(frame, 'Smartphone Detected', (left, top - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
89
+
90
+ self.smartphone_detected = True
91
+ self.left_blink_counter = 0
92
+ self.right_blink_counter = 0
93
+ return
94
+
95
+ self.frame_count += 1
96
+ self.smartphone_detected = False
97
+
98
+ def access_verified_image(self):
99
+ ret, frame = self.cap.read()
100
+ if not ret:
101
+ return None
102
+
103
+ # Perform anti-spoofing checks
104
+ gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
105
+ faces = self.detector(gray)
106
+
107
+ # Check if a face is detected
108
+ if len(faces) == 0:
109
+ return None
110
+
111
+ # Assume the first detected face is the subject
112
+ face = faces[0]
113
+ landmarks = self.predictor(gray, face)
114
+
115
+ # Check for blink detection (assuming you have this method correctly implemented)
116
+ leftEye = np.array([(landmarks.part(n).x, landmarks.part(n).y) for n in range(36, 42)])
117
+ rightEye = np.array([(landmarks.part(n).x, landmarks.part(n).y) for n in range(42, 48)])
118
+ ear_left = self.calculate_ear(leftEye)
119
+ ear_right = self.calculate_ear(rightEye)
120
+ if not self.detect_blink(ear_left, ear_right):
121
+ return None
122
+
123
+ # Check for hand gesture (assuming you have this method correctly implemented)
124
+ if not self.detect_hand_gesture(frame):
125
+ return None
126
+
127
+ # Check if a smartphone is detected
128
+ self.detect_smartphone(frame)
129
+ if self.smartphone_detected:
130
+ return None
131
+
132
+ # Check texture for liveness (assuming you have this method correctly implemented)
133
+ (x, y, w, h) = (face.left(), face.top(), face.width(), face.height())
134
+ expanded_region = frame[max(y - h // 2, 0):min(y + 3 * h // 2, frame.shape[0]),
135
+ max(x - w // 2, 0):min(x + 3 * w // 2, frame.shape[1])]
136
+ if not self.analyze_texture(expanded_region):
137
+ return None
138
+
139
+ return frame
140
+
141
+ def detect_blink(self, left_ear, right_ear):
142
+ if self.smartphone_detected:
143
+ self.left_eye_state = False
144
+ self.right_eye_state = False
145
+ self.left_blink_counter = 0
146
+ self.right_blink_counter = 0
147
+ return False
148
+
149
+ if left_ear < self.EAR_THRESHOLD:
150
+ if not self.left_eye_state:
151
+ self.left_eye_state = True
152
+ else:
153
+ if self.left_eye_state:
154
+ self.left_eye_state = False
155
+ self.left_blink_counter += 1
156
+
157
+ if right_ear < self.EAR_THRESHOLD:
158
+ if not self.right_eye_state:
159
+ self.right_eye_state = True
160
+ else:
161
+ if self.right_eye_state:
162
+ self.right_eye_state = False
163
+ self.right_blink_counter += 1
164
+
165
+ if self.left_blink_counter > 0 and self.right_blink_counter > 0:
166
+ self.left_blink_counter = 0
167
+ self.right_blink_counter = 0
168
+ return True
169
+ else:
170
+ return False
171
+
172
+ def run(self):
173
+ ret, frame = self.cap.read()
174
+ if not ret:
175
+ return None
176
+
177
+ # Detect smartphone in the frame
178
+ self.detect_smartphone(frame)
179
+
180
+ if self.smartphone_detected:
181
+ cv2.putText(frame, "Mobile phone detected, can't record attendance", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
182
+ else:
183
+ gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
184
+ faces = self.detector(gray)
185
+
186
+ for face in faces:
187
+ landmarks = self.predictor(gray, face)
188
+ leftEye = np.array([(landmarks.part(n).x, landmarks.part(n).y) for n in range(36, 42)])
189
+ rightEye = np.array([(landmarks.part(n).x, landmarks.part(n).y) for n in range(42, 48)])
190
+
191
+ ear_left = self.calculate_ear(leftEye)
192
+ ear_right = self.calculate_ear(rightEye)
193
+
194
+ if self.detect_blink(ear_left, ear_right):
195
+ self.blink_count += 1
196
+ cv2.putText(frame, f"Blink Count: {self.blink_count}", (10, 70), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
197
+
198
+ # Check if conditions for image capture are met
199
+ if self.blink_count >= 5 and not self.image_captured:
200
+ # Capture the image and reset blink count
201
+ self.save_image(frame)
202
+ self.blink_count = 0
203
+ self.image_captured = True
204
+
205
+ return frame
206
+
207
+ def save_image(self, frame):
208
+ # Implement logic to save the frame as an image
209
+ timestamp = int(time.time())
210
+ image_name = f"captured_{timestamp}.png"
211
+ cv2.imwrite(os.path.join(self.save_directory, image_name), frame)
212
+ self.captured_image = frame
213
+ print(f"Image captured and saved as {image_name}")
214
+
215
+ def get_captured_image(self):
216
+ # Return the captured image with preprocessing applied (if necessary)
217
+ captured_frame = self.captured_image
218
+ if captured_frame is not None:
219
+ return captured_frame
220
+ return None
221
+
222
+ if __name__ == "__main__":
223
+ anti_spoofing_system = AntiSpoofingSystem()
224
+ anti_spoofing_system.run()