brxerq commited on
Commit
d9e05c3
·
verified ·
1 Parent(s): 76b7398

Upload 2 files

Browse files
Files changed (2) hide show
  1. anti_spoofing.py +232 -224
  2. app.py +61 -0
anti_spoofing.py CHANGED
@@ -1,224 +1,232 @@
1
- import cv2
2
- import dlib
3
- import numpy as np
4
- import os
5
- import time
6
- import mediapipe as mp
7
- from skimage import feature
8
-
9
- class AntiSpoofingSystem:
10
- def __init__(self):
11
- self.detector = dlib.get_frontal_face_detector()
12
- self.anti_spoofing_completed = False
13
- self.blink_count = 0
14
- self.image_captured = False
15
- self.captured_image = None
16
- self.predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
17
-
18
- self.mp_hands = mp.solutions.hands
19
- self.hands = self.mp_hands.Hands(static_image_mode=False, max_num_hands=1, min_detection_confidence=0.7)
20
-
21
- self.cap = cv2.VideoCapture(0)
22
- self.cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1280)
23
- self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 720)
24
-
25
- self.save_directory = "Person"
26
- if not os.path.exists(self.save_directory):
27
- os.makedirs(self.save_directory)
28
-
29
- self.net_smartphone = cv2.dnn.readNet('yolov4.weights', 'Pretrained_yolov4 (1).cfg')
30
- with open('PreTrained_coco.names', 'r') as f:
31
- self.classes_smartphone = f.read().strip().split('\n')
32
-
33
- self.EAR_THRESHOLD = 0.25
34
- self.BLINK_CONSEC_FRAMES = 4
35
-
36
- self.left_eye_state = False
37
- self.right_eye_state = False
38
- self.left_blink_counter = 0
39
- self.right_blink_counter = 0
40
-
41
- self.smartphone_detected = False
42
- self.smartphone_detection_frame_interval = 30
43
- self.frame_count = 0
44
-
45
- # New attributes for student data
46
- self.student_id = None
47
- self.student_name = None
48
-
49
- def calculate_ear(self, eye):
50
- A = np.linalg.norm(eye[1] - eye[5])
51
- B = np.linalg.norm(eye[2] - eye[4])
52
- C = np.linalg.norm(eye[0] - eye[3])
53
- return (A + B) / (2.0 * C)
54
-
55
- def analyze_texture(self, face_region):
56
- gray_face = cv2.cvtColor(face_region, cv2.COLOR_BGR2GRAY)
57
- lbp = feature.local_binary_pattern(gray_face, P=8, R=1, method="uniform")
58
- lbp_hist, _ = np.histogram(lbp.ravel(), bins=np.arange(0, 58), range=(0, 58))
59
- lbp_hist = lbp_hist.astype("float")
60
- lbp_hist /= (lbp_hist.sum() + 1e-5)
61
- return np.sum(lbp_hist[:10]) > 0.3
62
-
63
- def detect_hand_gesture(self, frame):
64
- results = self.hands.process(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
65
- return results.multi_hand_landmarks is not None
66
-
67
- def detect_smartphone(self, frame):
68
- if self.frame_count % self.smartphone_detection_frame_interval == 0:
69
- blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (416, 416), swapRB=True, crop=False)
70
- self.net_smartphone.setInput(blob)
71
- output_layers_names = self.net_smartphone.getUnconnectedOutLayersNames()
72
- detections = self.net_smartphone.forward(output_layers_names)
73
-
74
- for detection in detections:
75
- for obj in detection:
76
- scores = obj[5:]
77
- class_id = np.argmax(scores)
78
- confidence = scores[class_id]
79
- if confidence > 0.5 and self.classes_smartphone[class_id] == 'cell phone':
80
- center_x = int(obj[0] * frame.shape[1])
81
- center_y = int(obj[1] * frame.shape[0])
82
- width = int(obj[2] * frame.shape[1])
83
- height = int(obj[3] * frame.shape[0])
84
- left = int(center_x - width / 2)
85
- top = int(center_y - height / 2)
86
-
87
- cv2.rectangle(frame, (left, top), (left + width, top + height), (0, 0, 255), 2)
88
- cv2.putText(frame, 'Smartphone Detected', (left, top - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
89
-
90
- self.smartphone_detected = True
91
- self.left_blink_counter = 0
92
- self.right_blink_counter = 0
93
- return
94
-
95
- self.frame_count += 1
96
- self.smartphone_detected = False
97
-
98
- def access_verified_image(self):
99
- ret, frame = self.cap.read()
100
- if not ret:
101
- return None
102
-
103
- # Perform anti-spoofing checks
104
- gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
105
- faces = self.detector(gray)
106
-
107
- # Check if a face is detected
108
- if len(faces) == 0:
109
- return None
110
-
111
- # Assume the first detected face is the subject
112
- face = faces[0]
113
- landmarks = self.predictor(gray, face)
114
-
115
- # Check for blink detection (assuming you have this method correctly implemented)
116
- leftEye = np.array([(landmarks.part(n).x, landmarks.part(n).y) for n in range(36, 42)])
117
- rightEye = np.array([(landmarks.part(n).x, landmarks.part(n).y) for n in range(42, 48)])
118
- ear_left = self.calculate_ear(leftEye)
119
- ear_right = self.calculate_ear(rightEye)
120
- if not self.detect_blink(ear_left, ear_right):
121
- return None
122
-
123
- # Check for hand gesture (assuming you have this method correctly implemented)
124
- if not self.detect_hand_gesture(frame):
125
- return None
126
-
127
- # Check if a smartphone is detected
128
- self.detect_smartphone(frame)
129
- if self.smartphone_detected:
130
- return None
131
-
132
- # Check texture for liveness (assuming you have this method correctly implemented)
133
- (x, y, w, h) = (face.left(), face.top(), face.width(), face.height())
134
- expanded_region = frame[max(y - h // 2, 0):min(y + 3 * h // 2, frame.shape[0]),
135
- max(x - w // 2, 0):min(x + 3 * w // 2, frame.shape[1])]
136
- if not self.analyze_texture(expanded_region):
137
- return None
138
-
139
- return frame
140
-
141
- def detect_blink(self, left_ear, right_ear):
142
- if self.smartphone_detected:
143
- self.left_eye_state = False
144
- self.right_eye_state = False
145
- self.left_blink_counter = 0
146
- self.right_blink_counter = 0
147
- return False
148
-
149
- if left_ear < self.EAR_THRESHOLD:
150
- if not self.left_eye_state:
151
- self.left_eye_state = True
152
- else:
153
- if self.left_eye_state:
154
- self.left_eye_state = False
155
- self.left_blink_counter += 1
156
-
157
- if right_ear < self.EAR_THRESHOLD:
158
- if not self.right_eye_state:
159
- self.right_eye_state = True
160
- else:
161
- if self.right_eye_state:
162
- self.right_eye_state = False
163
- self.right_blink_counter += 1
164
-
165
- if self.left_blink_counter > 0 and self.right_blink_counter > 0:
166
- self.left_blink_counter = 0
167
- self.right_blink_counter = 0
168
- return True
169
- else:
170
- return False
171
-
172
- def run(self):
173
- ret, frame = self.cap.read()
174
- if not ret:
175
- return None
176
-
177
- # Detect smartphone in the frame
178
- self.detect_smartphone(frame)
179
-
180
- if self.smartphone_detected:
181
- cv2.putText(frame, "Mobile phone detected, can't record attendance", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
182
- else:
183
- gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
184
- faces = self.detector(gray)
185
-
186
- for face in faces:
187
- landmarks = self.predictor(gray, face)
188
- leftEye = np.array([(landmarks.part(n).x, landmarks.part(n).y) for n in range(36, 42)])
189
- rightEye = np.array([(landmarks.part(n).x, landmarks.part(n).y) for n in range(42, 48)])
190
-
191
- ear_left = self.calculate_ear(leftEye)
192
- ear_right = self.calculate_ear(rightEye)
193
-
194
- if self.detect_blink(ear_left, ear_right):
195
- self.blink_count += 1
196
- cv2.putText(frame, f"Blink Count: {self.blink_count}", (10, 70), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
197
-
198
- # Check if conditions for image capture are met
199
- if self.blink_count >= 5 and not self.image_captured:
200
- # Capture the image and reset blink count
201
- self.save_image(frame)
202
- self.blink_count = 0
203
- self.image_captured = True
204
-
205
- return frame
206
-
207
- def save_image(self, frame):
208
- # Implement logic to save the frame as an image
209
- timestamp = int(time.time())
210
- image_name = f"captured_{timestamp}.png"
211
- cv2.imwrite(os.path.join(self.save_directory, image_name), frame)
212
- self.captured_image = frame
213
- print(f"Image captured and saved as {image_name}")
214
-
215
- def get_captured_image(self):
216
- # Return the captured image with preprocessing applied (if necessary)
217
- captured_frame = self.captured_image
218
- if captured_frame is not None:
219
- return captured_frame
220
- return None
221
-
222
- if __name__ == "__main__":
223
- anti_spoofing_system = AntiSpoofingSystem()
224
- anti_spoofing_system.run()
 
 
 
 
 
 
 
 
 
1
+ # Import all the libraries
2
+ import cv2
3
+ import dlib
4
+ import numpy as np
5
+ import os
6
+ import time
7
+ import mediapipe as mp
8
+ from skimage import feature
9
+
10
+ # I'm setting up the face and hand detectors here.
11
+ class AntiSpoofingSystem:
12
+ def __init__(self):
13
+ self.detector = dlib.get_frontal_face_detector()
14
+ self.predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
15
+
16
+ # Here I initialize MediaPipe for hand gesture detection.
17
+ self.mp_hands = mp.solutions.hands
18
+ self.hands = self.mp_hands.Hands(static_image_mode=False, max_num_hands=1, min_detection_confidence=0.7)
19
+
20
+
21
+ # This code is for Webcam if you have Jetson kit change value from 0 to 1.
22
+ self.cap = cv2.VideoCapture(0)
23
+ self.cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1280)
24
+ self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 720)
25
+
26
+ # I create a directory to save the captured images if it doesn't exist.
27
+ self.save_directory = "Person"
28
+ if not os.path.exists(self.save_directory):
29
+ os.makedirs(self.save_directory)
30
+
31
+
32
+ # Iam loading the Pre-trained model to detect smartphones.
33
+ self.net_smartphone = cv2.dnn.readNet('yolov4.weights', 'PreTrained_yolov4.cfg')
34
+ with open('PreTrained_coco.names', 'r') as f:
35
+ self.classes_smartphone = f.read().strip().split('\n')
36
+
37
+
38
+ # Setting some thresholds for eye aspect ratio to detect blinks.
39
+ self.EAR_THRESHOLD = 0.2
40
+ self.BLINK_CONSEC_FRAMES = 4
41
+
42
+ # Initializing some variables to keep track of eye states and blink counts.
43
+ self.left_eye_state = False
44
+ self.right_eye_state = False
45
+ self.left_blink_counter = 0
46
+ self.right_blink_counter = 0
47
+
48
+ # Variables to manage smartphone detection.
49
+ self.smartphone_detected = False
50
+ self.smartphone_detection_frame_interval = 10
51
+ self.frame_count = 0
52
+
53
+ # New attributes for student data
54
+ self.student_id = None
55
+ self.student_name = None
56
+
57
+
58
+ # It is calculating the eye aspect ratio to detect blinks.
59
+ def calculate_ear(self, eye):
60
+ A = np.linalg.norm(eye[1] - eye[5])
61
+ B = np.linalg.norm(eye[2] - eye[4])
62
+ C = np.linalg.norm(eye[0] - eye[3])
63
+ return (A + B) / (2.0 * C)
64
+
65
+
66
+ # Analyzing the texture of the face to check for liveness.
67
+ def analyze_texture(self, face_region):
68
+ gray_face = cv2.cvtColor(face_region, cv2.COLOR_BGR2GRAY)
69
+ lbp = feature.local_binary_pattern(gray_face, P=8, R=1, method="uniform")
70
+ lbp_hist, _ = np.histogram(lbp.ravel(), bins=np.arange(0, 58), range=(0, 58))
71
+ lbp_hist = lbp_hist.astype("float")
72
+ lbp_hist /= (lbp_hist.sum() + 1e-5)
73
+ return np.sum(lbp_hist[:10]) > 0.3
74
+
75
+ # Detecting hand using MediaPipe.
76
+ def detect_hand_gesture(self, frame):
77
+ results = self.hands.process(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
78
+ return results.multi_hand_landmarks is not None
79
+
80
+ # Detecting smartphones in the frame to prevent System Bypass.
81
+ def detect_smartphone(self, frame):
82
+ if self.frame_count % self.smartphone_detection_frame_interval == 0:
83
+ blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (224, 224), swapRB=True, crop=False)
84
+ self.net_smartphone.setInput(blob)
85
+ output_layers_names = self.net_smartphone.getUnconnectedOutLayersNames()
86
+ detections = self.net_smartphone.forward(output_layers_names)
87
+
88
+ for detection in detections:
89
+ for obj in detection:
90
+ scores = obj[5:]
91
+ class_id = np.argmax(scores)
92
+ confidence = scores[class_id]
93
+ if confidence > 0.3 and self.classes_smartphone[class_id] == 'cell phone':
94
+ center_x = int(obj[0] * frame.shape[1])
95
+ center_y = int(obj[1] * frame.shape[0])
96
+ width = int(obj[2] * frame.shape[1])
97
+ height = int(obj[3] * frame.shape[0])
98
+ left = int(center_x - width / 2)
99
+ top = int(center_y - height / 2)
100
+
101
+ cv2.rectangle(frame, (left, top), (left + width, top + height), (0, 0, 255), 2)
102
+ cv2.putText(frame, 'Smartphone Detected', (left, top - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
103
+
104
+ self.smartphone_detected = True
105
+ self.left_blink_counter = 0
106
+ self.right_blink_counter = 0
107
+ return
108
+
109
+ self.frame_count += 1
110
+ self.smartphone_detected = False
111
+
112
+ # Checking if the user blinked to confirm their presence.
113
+ def detect_blink(self, left_ear, right_ear):
114
+ if self.smartphone_detected:
115
+ self.left_eye_state = False
116
+ self.right_eye_state = False
117
+ self.left_blink_counter = 0
118
+ self.right_blink_counter = 0
119
+ return False
120
+
121
+ # Incrementing blink counter if a blink is detected.
122
+ if left_ear < self.EAR_THRESHOLD:
123
+ if not self.left_eye_state:
124
+ self.left_eye_state = True
125
+ else:
126
+ if self.left_eye_state:
127
+ self.left_eye_state = False
128
+ self.left_blink_counter += 1
129
+
130
+ if right_ear < self.EAR_THRESHOLD:
131
+ if not self.right_eye_state:
132
+ self.right_eye_state = True
133
+ else:
134
+ if self.right_eye_state:
135
+ self.right_eye_state = False
136
+ self.right_blink_counter += 1
137
+
138
+
139
+ # Resetting blink counters after a successful blink detection.
140
+ if self.left_blink_counter > 0 and self.right_blink_counter > 0:
141
+ self.left_blink_counter = 0
142
+ self.right_blink_counter = 0
143
+ return True
144
+ else:
145
+ return False
146
+
147
+ # Main loop to process the video feed.
148
+ def run(self, update_frame_callback=None):
149
+ blink_count = 0
150
+ hand_gesture_detected = False
151
+ image_captured = False
152
+ last_event_time = time.time()
153
+ event_timeout = 60
154
+ message_displayed = False
155
+
156
+ while True:
157
+ ret, frame = self.cap.read()
158
+ if not ret:
159
+ break
160
+
161
+ # Detecting smartphones in the frame.
162
+ self.detect_smartphone(frame)
163
+
164
+ # Displaying a warning if a smartphone is detected.
165
+ if self.smartphone_detected:
166
+ cv2.putText(frame, "Mobile phone detected, can't record attendance", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
167
+ blink_count = 0
168
+
169
+ # Processing each frame to detect faces, blinks, and hand gestures.
170
+ if not self.smartphone_detected:
171
+ gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
172
+ faces = self.detector(gray)
173
+
174
+ for face in faces:
175
+ landmarks = self.predictor(gray, face)
176
+ leftEye = np.array([(landmarks.part(n).x, landmarks.part(n).y) for n in range(36, 42)])
177
+ rightEye = np.array([(landmarks.part(n).x, landmarks.part(n).y) for n in range(42, 48)])
178
+
179
+ ear_left = self.calculate_ear(leftEye)
180
+ ear_right = self.calculate_ear(rightEye)
181
+
182
+ if self.detect_blink(ear_left, ear_right):
183
+ blink_count += 1
184
+
185
+ # Prionting and Incrementing blink Count
186
+ cv2.putText(frame, f"Blink Count: {blink_count}", (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
187
+
188
+ hand_gesture_detected = self.detect_hand_gesture(frame)
189
+
190
+ # Indicating when a hand gesture is detected.
191
+ if hand_gesture_detected:
192
+ cv2.putText(frame, "Hand Gesture Detected", (10, 100), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
193
+
194
+ (x, y, w, h) = (face.left(), face.top(), face.width(), face.height())
195
+ expanded_region = frame[max(y - h // 2, 0):min(y + 3 * h // 2, frame.shape[0]),
196
+ max(x - w // 2, 0):min(x + 3 * w // 2, frame.shape[1])]
197
+
198
+ # Checking if the conditions are met to capture the image.
199
+ if blink_count >= 5 and hand_gesture_detected and self.analyze_texture(expanded_region) and not message_displayed:
200
+ cv2.putText(frame, "Please hold still for 2 seconds...", (10, 150), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
201
+ cv2.imshow("Frame", frame)
202
+ cv2.waitKey(1)
203
+ time.sleep(2)
204
+ message_displayed = True
205
+
206
+ if message_displayed and not image_captured:
207
+ timestamp = int(time.time())
208
+ picture_name = f"{self.student_id}_{timestamp}.jpg"
209
+ cv2.imwrite(os.path.join(self.save_directory, picture_name), expanded_region)
210
+ image_captured = True
211
+
212
+ if update_frame_callback:
213
+ update_frame_callback(frame)
214
+
215
+ cv2.imshow("Frame", frame)
216
+ if image_captured or (time.time() - last_event_time > event_timeout and not hand_gesture_detected):
217
+ break
218
+ if cv2.waitKey(1) & 0xFF == ord('q'):
219
+ break
220
+
221
+ self.cap.release()
222
+ cv2.destroyAllWindows()
223
+
224
+ #If person if real and did all the required features then his attendance will be marked if not then it will print no person detected.
225
+ if image_captured:
226
+ print(f"Person detected. Face image captured and saved as {picture_name}.")
227
+ elif not hand_gesture_detected:
228
+ print("No real person detected")
229
+
230
+ if __name__ == "__main__":
231
+ anti_spoofing_system = AntiSpoofingSystem()
232
+ anti_spoofing_system.run()
app.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ import tkinter as tk
3
+ from tkinter import messagebox
4
+ from PIL import Image, ImageTk
5
+ import threading
6
+ import cv2
7
+ from anti_spoofing import AntiSpoofingSystem
8
+
9
+ class AntiSpoofingGUI:
10
+ def __init__(self, anti_spoofing_system):
11
+ self.anti_spoofing_system = anti_spoofing_system
12
+ self.window = tk.Tk()
13
+ self.window.title("Anti-Spoofing System")
14
+
15
+ self.student_id_label = tk.Label(self.window, text="Student ID:")
16
+ self.student_id_label.pack()
17
+ self.student_id_entry = tk.Entry(self.window)
18
+ self.student_id_entry.pack()
19
+
20
+ self.student_name_label = tk.Label(self.window, text="Student Name:")
21
+ self.student_name_label.pack()
22
+ self.student_name_entry = tk.Entry(self.window)
23
+ self.student_name_entry.pack()
24
+
25
+ self.start_button = tk.Button(self.window, text="Start", command=self.start_anti_spoofing)
26
+ self.start_button.pack()
27
+
28
+ self.image_label = tk.Label(self.window)
29
+ self.image_label.pack()
30
+
31
+ # Create a PhotoImage object to use for the video feed
32
+ self.photo = ImageTk.PhotoImage("RGB", (640, 480))
33
+
34
+ def start_anti_spoofing(self):
35
+ self.student_id = self.student_id_entry.get()
36
+ self.student_name = self.student_name_entry.get()
37
+
38
+ if not self.student_id or not self.student_name:
39
+ messagebox.showwarning("Warning", "Please enter both Student ID and Name")
40
+ return
41
+
42
+ threading.Thread(target=self.run_anti_spoofing, daemon=True).start()
43
+
44
+ def run_anti_spoofing(self):
45
+ self.anti_spoofing_system.student_id = self.student_id
46
+ self.anti_spoofing_system.student_name = self.student_name
47
+ self.anti_spoofing_system.run(self.update_frame)
48
+
49
+ def update_frame(self, frame):
50
+ cv2image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGBA)
51
+ self.photo.paste(Image.fromarray(cv2image))
52
+ self.image_label.config(image=self.photo)
53
+ self.image_label.update_idletasks()
54
+
55
+ def run(self):
56
+ self.window.mainloop()
57
+
58
+ if __name__ == "__main__":
59
+ anti_spoofing_system = AntiSpoofingSystem()
60
+ gui = AntiSpoofingGUI(anti_spoofing_system)
61
+ gui.run()